Advertisement

Recent progress in third-generation low alloy steels developed under M3 microstructure control

  • Zhen-jia Xie
  • Cheng-jia ShangEmail author
  • Xue-lin Wang
  • Xue-min Wang
  • Gang Han
  • Raja-devesh-kumar Misra
Invited Review
  • 13 Downloads

Abstract

During the past thirty years, two generations of low alloy steels (ferrite/pearlite followed by bainite/martensite) have been developed and widely used in structural applications. The third-generation of low alloy steels is expected to achieve high strength and improved ductility and toughness, while satisfying the new demands for weight reduction, greenness, and safety. This paper reviews recent progress in the development of third-generation low alloy steels with an M3 microstructure, namely, microstructures with multi-phase, meta-stable austenite, and multi-scale precipitates. The review summarizes the alloy designs and processing routes of microstructure control, and the mechanical properties of the alloys. The stabilization of retained austenite in low alloy steels is especially emphasized. Multi-scale nano-precipitates, including carbides of microal-loying elements and Cu-rich precipitates obtained in third-generation low alloy steels, are then introduced. The structure–property relationships of third-generation alloys are also discussed. Finally, the promises and challenges to future applications are explored.

Keywords

third-generation low alloy steels multi-phase microstructure meta-stable retained austenite multi-scale precipitates 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51701012), the National Basic Research Program of China (973 Program: No. 2010CB630801) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-17–004A1). R.D.K. Misra acknowledges continued collaboration with the University of Science and Technology Beijing as Honorary Professor.

References

  1. [1]
    H.L. Fan, A.M. Zhao, Q.C. Li, H. Guo, and J.G. He, Effects of ausforming strain on bainite transformation in nanostructured bainite steel, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 264.CrossRefGoogle Scholar
  2. [2]
    B. Avishan, Effect of prolonged isothermal heat treatment on the mechanical behavior of advanced NANOBAIN steel, Int. J. Miner. Metall. Mater, 24 (2017), No. 9, p. 1010.CrossRefGoogle Scholar
  3. [3]
    S.G. Hashemi and B. Eghbali, Analysis of the formation conditions and characteristics of interphase and random vanadium precipitation in a low-carbon steel during isothermal heat treatment, Int. J. Miner. Metall. Mater, 25(2018), No. 3, p. 339.CrossRefGoogle Scholar
  4. [4]
    D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater, 25(2018), No. 3, p. 325.CrossRefGoogle Scholar
  5. [5]
    B. Shahriari, R. Vafaei, E.M. Sharifi, and K. Farmanesh, Aging behavior of a copper-bearing high-strength low-carbon steel, Int. J. Miner. Metall. Mater, 25(2018), No. 4, p. 429.CrossRefGoogle Scholar
  6. [6]
    Y.Q. Weng, C.J. Shang, and C.F. Yan, State-of-the-art and development trends of HSLA steels in China, Iron Steel, 46(2011), No. 9, p. 1.Google Scholar
  7. [7]
    H. Dong, M.Q. Wang, and Y.Q. Weng, Performance improvement of steels through M3 structure control, Iron Steel, 45(2010), No. 7, p. 1.Google Scholar
  8. [8]
    Y.F. Shen, Y.D. Liu, X. Sun, Y.D. Wang, L. Zuo, and R.D.K. Misra, Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae, Mater. Sci. Eng. A, 583(2013), p. 1.CrossRefGoogle Scholar
  9. [9]
    P.J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr Opin. Solid State Mater. Sci., 8(2004), No. 3–4, p. 259.CrossRefGoogle Scholar
  10. [10]
    J.G. Speer, D.V. Edmonds, F.C. Rizzo, and D.K. Matlock, Partitioning of carbon from supersaturated plates of ferrite, with application to steel processing and fundamentals of the bainite transformation, Curr. Opin. Solid State. Mater. Sci., 8(2004), No. 3–4, p. 219.CrossRefGoogle Scholar
  11. [11]
    J. Speer, D.K. Matlock, B.C. De Cooman, and J.G. Schroth, Carbon partitioning into austenite after martensite transformation, Acta Mater., 51(2003), No. 9, p. 2611.CrossRefGoogle Scholar
  12. [12]
    R.L. Miller, Ultrafine-grained microstructures and mechanical properties of alloy steels, Metall. Mater. Trans. B, 3(1972), No. 4, p. 905.CrossRefGoogle Scholar
  13. [13]
    HW. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, and H. Dong, Experimental and numerical analysis on formation of stable austenite during the intercritical annealing of 5Mn steel, Acta Mater., 59(2011), No. 10, p. 4002.CrossRefGoogle Scholar
  14. [14]
    R.D.K. Misra, V.S.A. Challa, P.K.C. Venkatsurya, Y.F. Shen, M.C. Somani, and L.P. Karjalainen, Interplay between grain structure, deformation mechanisms and austenite stability in phase-reversion-induced nanograined/ul-trafine-grained austenitic ferrous alloy, Acta Mater, 84(2015), p. 339.CrossRefGoogle Scholar
  15. [15]
    T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, and C.S. Lee, Tensile deformation behavior of Fe-Mn-C TWIP steel with ultrafine elongated grain structure, Mater. Lett., 75(2012), p. 169.CrossRefGoogle Scholar
  16. [16]
    W.H. Zhou, XL. Wang, P.K.C. Venkatsurya, H. Guo, C.J. Shang, and R.D.K. Misra, Structure-mechanical property relationship in a high strength low carbon alloy steel processed by two-step intercritical annealing and intercritical tempering, Mater. Sci. Eng. A, 607(2014), p. 569.CrossRefGoogle Scholar
  17. [17]
    W.H. Zhou, H. Guo, Z.J. Xie, X.M. Wang, and C.J. Shang, High strength low-carbon alloyed steel with good ductility by combining the retained austenite and nano-sized precipitates, Mater. Sci. Eng. A, 587(2013), p. 365.CrossRefGoogle Scholar
  18. [18]
    W.H. Zhou, H. Guo, Z.J. Xie, C.J. Shang, and R.D.K. Misra, Copper precipitation and its impact on mechanical properties in a low carbon microalloyed steel processed by a three-step heat treatment, Mater. Des., 63(2014), p. 42.CrossRefGoogle Scholar
  19. [19]
    Z.J. Xie, S.F. Yuan, W.H. Zhou, J.R. Yang, H. Guo, and C.J. Shang, Stabilization of retained austenite by the two-step intercritical heat treatment and its effect on the toughness of a low alloyed steel, Mater. Des., 59(2014), p. 193.CrossRefGoogle Scholar
  20. [20]
    Z.J. Xie, L. Xiong, G. Han, XL. Wang, and C.J. Shang, Thermal stability of retained austenite and properties of a multi-phase low alloy steel, Metals, 8(2018), No. 10, p. 807.CrossRefGoogle Scholar
  21. [21]
    Z.J. Xie, G. Han, W.H. Zhou, CY. Zeng, and C.J. Shang, Study of retained austenite and nano-scale precipitation and their effects on properties of a low alloyed multi-phase steel by the two-step intercritical treatment, Mater. Charact, 113(2016), p. 60.CrossRefGoogle Scholar
  22. [22]
    G. Han, Z.J. Xie, L. Xiong, C.J. Shang, and R.D.K. Msra, Evolution of nano-size precipitation and mechanical properties in a high strength-ductility low alloy steel through intercritical treatment, Mater. Sci. Eng. A, 705(2017), p. 89.CrossRefGoogle Scholar
  23. [23]
    G. Han, Z.J. Xie, B. Lei, W.Q. Liu, H.H. Zhu, Y. Yan, R.D.K. Misra, and C.J. Shang, Simultaneous enhancement of strength and plasticity by nano B2 clusters and nano-γ phase in a low carbon low alloy steel, Mater. Sci. Eng. A, 730(2018), p. 119.CrossRefGoogle Scholar
  24. [24]
    W.J. Nie, X.M. Wang, S.J. Wu, H.L. Guan, and C.J. Shang, Stress-strain behavior of multi-phase high performance structural steel, Sci. China Technol. Sci, 55(2012), No. 7, p. 1791.CrossRefGoogle Scholar
  25. [25]
    J. Shi, X.J. Sun, M.Q. Wang, W.J. Hui, H. Dong, and W.Q. Cao, Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite, Scripta Mater., 63(2010), No. 8, p. 815.CrossRefGoogle Scholar
  26. [26]
    Z.J. Xie, C.J. Shang, W.H. Zhou, and B.B. Wu, Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel, Acta Metall. Sin., 52(2016), No. 2, p. 224.Google Scholar
  27. [27]
    K.J. Kim and L.H. Schwartz, On the effects of intercritical tempering on the impact energy of Fe-9Ni-0.1C, Mater. Sci. Eng., 33(1978), No. 1, p. 5.CrossRefGoogle Scholar
  28. [28]
    C.A. Pampillo and H.W. Paxton, The effect of reverted austenite on the mechanical properties and toughness of 12 Ni and 18 Ni (200) maraging steels, Metall. Mater. Trans. B, 3(1972), No. 11, p. 2895.CrossRefGoogle Scholar
  29. [29]
    S.D. Antolovich and B. Singh, On the toughness increment associated with the austenite to martensite phase transformation in TRIP steels, Metall. Mater. Trans. B, 2(1971), No. 8, p. 2135.CrossRefGoogle Scholar
  30. [30]
    W.H. Zhou, Z.J. Xie, H. Guo, and C.J. Shang, Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon lowalloy steel with good ductility, Acta Metall. Sin., 51(2015), No. 4, p. 407.Google Scholar
  31. [31]
    M. Mukherjee, S. Tiwari, and B. Bhattacharya, Evaluation of factors affecting the edge formability of two hot rolled multiphase steels, Int. J. Miner. Metall. Mater, 25(2018), No. 2, p. 199.CrossRefGoogle Scholar
  32. [32]
    C.F. Kuang, ZW. Zheng, M.L. Wang, Q. Xu, and SG. Zhan, Effect of hot-dip galvanizing processes on the micro-structure and mechanical properties of 600-MPa hot-dip galvanized dual-phase steel, Int. J. Miner. Metall. Mater, 24(2017), No. 12, p. 1379.CrossRefGoogle Scholar
  33. [33]
    Z.J. Xie, Y.P. Fang, G. Han, H. Guo, R.D.K. Misra, and C.J. Shang, Structure-property relationship in a 960 MPa grade ultrahigh strength low carbon niobium-vanadium mi-croalloyed steel: The significance of high frequency induction tempering, Mater. Sci. Eng. A, 618(2014), p. 112.CrossRefGoogle Scholar
  34. [34]
    S. Van Der Zwaag, L. Zhao, S.O Kruijver, and J. Sietsma, Thermal and mechanical stability of retained austenite in aluminum-containing multiphase TRIP steels, ISIJ Int., 42(2002), No. 12, p. 1565.CrossRefGoogle Scholar
  35. [35]
    D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and partitioning martensite—A novel steel heat treatment, Mater. Sci. Eng. A, 438-440(2006), p. 25.CrossRefGoogle Scholar
  36. [36]
    C.K. Syn, B. Fultz, and J.W. Morris, Mechanical stability of retained austenite in tempered 9Ni steel, Metall. Trans. A, 9(1978), No. 11, p. 1635.CrossRefGoogle Scholar
  37. [37]
    B. Fultz, J.I. Kim, Y.H. Kim, and JW. Morris, The chemical composition of precipitated austenite in 9Ni steel, Metall. Trans. A, 17(1986), No. 6, p. 967.CrossRefGoogle Scholar
  38. [38]
    B. Fultz, J.I. Kim, Y.H. Kim, H.J. Kim, G.O Fior, and JW. Morris, The stability of precipitated austenite and the toughness of 9Ni steel, Metall. Trans. A, 16(1985), No. 12, p. 2237.CrossRefGoogle Scholar
  39. [39]
    Y.H. Yang, QW. Cai, D. Tang, and H.B. Wu, Precipitation and stability of reversed austenite in 9Ni steel, Int. J. Miner. Metall. Mater, 17(2010), No. 5, p. 587.CrossRefGoogle Scholar
  40. [40]
    H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong, Heat treatment effects on the micro-structure and mechanical properties of a medium manganese steel (0.2C-5Mn), Mater. Sci. Eng. A, 532(2012), p. 435.CrossRefGoogle Scholar
  41. [41]
    Y.K. Lee and J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol, 31(2015), No. 7, p. 843.CrossRefGoogle Scholar
  42. [42]
    J. Hu, LX. Du, W. Xu, J.H. Zhai, Y. Dong, Y.J. Liu, and R.D.K. Msra, Ensuring combination of strength, ductility and toughness in medium-manganese steel through optimization of nano-scale metastable austenite, Mater. Charact, 136(2018), p. 20.CrossRefGoogle Scholar
  43. [43]
    Z.J. Xie, C.J. Shang, S.V. Subramanian, X.P. Ma, and R.D.K. Misra, Atom probe tomography and numerical study of austenite stabilization in a low carbon low alloy steel processed by two-step intercritical heat treatment, Scripta Mater, 137(2017), p. 36.CrossRefGoogle Scholar
  44. [44]
    S. Takaki, K. Fukunaga, J. Syarif, and T. Tsuchiyama, Effect of grain refinement on thermal stability of metastable austenitic steel, Mater. Trans., 45(2004), No. 7, p. 2245.CrossRefGoogle Scholar
  45. [45]
    B.H. Jiang, L.M. Sun, R.C. Li, and T.Y. Hsu, Influence of austenite grain size on γ-ε martensitic transformation temperature in Fe-Mn-Si alloys, Scripta Metall. Mater, 33(1995), No. 1, p. 63.CrossRefGoogle Scholar
  46. [46]
    H.S. Yang and H.K.D.H. Bhadeshia, Austenite grain size and the martensite-start temperature, Scripta Mater, 60(2009), No. 7, p. 493.CrossRefGoogle Scholar
  47. [47]
    E. Jimenez-Melero, N.H. Van Dijk, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright, and S. van der Zwaag, Martensitic transformation of individual grains in low-alloyed TRIP steels, Scripta Mater, 56(2007), No. 5, p. 421.CrossRefGoogle Scholar
  48. [48]
    S. Hashimoto, S. Ikeda, K.I. Sugimoto, and S. Myake, Effects of Nb and Mo addition to 0.2%C-1.5%Si-1.5%Mn steel on mechanical properties of hot rolled TRIP-aided steel sheets, ISIJ Int., 44(2004), No. 9, p. 1590.CrossRefGoogle Scholar
  49. [49]
    J. Heslop and N.J. Petch, The ductile-brittle transition in the fracture of α-iron: II, Philos. Mag., 3(1958), No. 34, p. 1128.CrossRefGoogle Scholar
  50. [50]
    N.J. Petch, The ductile-brittle transition in the fracture of α-iron: I, Philos. Mag., 3(1958), No. 34, p. 1089.CrossRefGoogle Scholar
  51. [51]
    S.D. Antolovich, A. Saxena, and G.R. Chanani, Increased fracture toughness in a 300 grade maraging steel as a result of thermal cycling, Metall. Trans., 5(1974), No. 3, p. 623.CrossRefGoogle Scholar
  52. [52]
    XL. Gui, K.K. Wang, G.H. Gao, R.D.K. Msra, Z.L. Tan, and B.Z. Bai, Rolling contact fatigue of bainitic rail steels: The significance of microstructure, Mater. Sci. Eng. A, 657(2016), p. 82.CrossRefGoogle Scholar
  53. [53]
    G.H. Gao, B.X. Zhang, C. Cheng, P. Zhao, H. Zhang, and B.Z. Bai, Very high cycle fatigue behaviors of bainite/martensite multiphase steel treated by quenching-partitioning-tempering process, Int. J. Fatigue, 92(2016), p. 203.CrossRefGoogle Scholar
  54. [54]
    X.L. Wang, Y.R. Nan, Z.J. Xie, Y.T. Tsai, J.R. Yang, and C.J. Shang, Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel, Mater. Sci. Eng. A, 702(2017), p. 196.CrossRefGoogle Scholar
  55. [55]
    X.L. Wang, L.M. Dong, WW. Yang, Y. Zhang, X.M. Wang, and C.J. Shang, Effect of Mn. Ni, Moproportion on microstructure and mechanical properties of weld metal of K65 pipeline steel, Acta Metall. Sin., 52(2016), No. 6, p. 649.Google Scholar
  56. [56]
    X.L. Wang, Y.T. Tsai, J.R. Yang, Z.Q. Wang, X.C. Li, C.J. Shang, and R.D.K. Misra, Effect of interpass temperature on the microstructure and mechanical properties of multipass weld metal in a 550-MPa-grade offshore engineering steel, Weld. World, 61(2017), No. 6, p. 1155.CrossRefGoogle Scholar
  57. [57]
    X.L. Wang, C.J. Shang, and X.M. Wang, Characterization of the multi-pass weld metal and the effect of post-weld heat treatment on its microstructure and toughness, [in] HSLA Steels 2015, Microalloying 2015 & Offshore Engineering Steels 2015, Hangzhou, 2015, p. 481.Google Scholar
  58. [58]
    X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Msra, Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness, Mater. Sci. Eng. A, 649(2016), p. 282.CrossRefGoogle Scholar
  59. [59]
    L.M. Dong, L. Yang, J. Dai, Y. Zhang, X.L. Wang, and C.J. Shang, Effect of Mn, Ni, Mo contents on microstructure transition and low temperature toughness of weld metal for K65 hot bending pipe, Acta. Metall. Sin., 53(2017), No. 6, p. 657.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Zhen-jia Xie
    • 1
  • Cheng-jia Shang
    • 1
    Email author
  • Xue-lin Wang
    • 1
  • Xue-min Wang
    • 1
  • Gang Han
    • 2
  • Raja-devesh-kumar Misra
    • 3
  1. 1.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Institute of Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  3. 3.Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoUSA

Personalised recommendations