Characterization and corrosion studies of ternary Zn−Ni−Sn alloys

  • Reyhan Solmaz
  • B. Deniz KarahanEmail author


Nine distinct zinc-nickel-tin films with different compositions have been galvanostatically electrodeposited. The films have been characterized by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Their corrosion potentials and densities have been estimated using Tafel extrapolation. Next, the electrochemical behaviors of the films (deposited through the electrolytes containing 0, 6, 8, and 10 g/L SnCl2∙6H2O) have been examined based on cyclic voltammetry (CV) measurements. Further, these films have been immersed in 3.5wt% NaCl solution for 1 h, 1 d, 7 d, 14 d, 28 d, and 42 d followed by application of Tafel extrapolation and electrochemical impedance spectroscopy (EIS) tests on each aged sample. Finally, to analyze the morphologies and the compositions of the oxide films covering the surfaces of the 42-d aged films, FT-IR and SEM analyses have been performed. The results indicated that the Zn–Ni–Sn film produced through the bath including 6 g/L SnCl2∙6H2O exhibits superior corrosion resistance because of the high Ni content in the presence of Sn that promotes the barrier protection capability of the deposit.


ternary alloys corrosion electro galvanizing anomalous deposition Tafel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] A. Brenner, Electrodeposition of Alloys, Academic Press, New York and London, 1963.Google Scholar
  2. [2] H. Fukushima, T. Akiyama, M. Yano, T. Ishikawa, and R. Kammel, Electrodeposition behavior of Zn-iron-group metal alloys from sulfate and chloride baths, ISIJ Int. 33(1993), No. 9, p. 1009.CrossRefGoogle Scholar
  3. [3] Y.P. Lin and J.R. Selman, Electrodeposition of corrosion-resistant Ni-Zn alloy, J. Electrochem. Soc, 140(1993), No. 5, p. 1299.CrossRefGoogle Scholar
  4. [4] G. Roventi, T. Bellezze, and R. Fratesi, Electrochemical study on the inhibitory effect of the underpotential deposition of zinc on Zn-Co alloy electrodeposition, Eec trochim. Acta, 51(2006), No. 13, p. 2691.Google Scholar
  5. [5] Z.D. Wu, L. Fedrizzi, and P.L. Bonora, Electrochemical studies of zinc-nickel codeposition in chloride baths, Surf. Coat. Technol, 85(1996), No. 3, p. 170.CrossRefGoogle Scholar
  6. [6] T.V. Byk, T.V. Gaevskaya, and L.S. Tsybulskaya, Effect of electrodeposition conditions on the composition, mcro-structure, and corrosion resistance of Zn-Ni alloy coatings, Surf. Coat. Technol., 202(2008), No. 24, p. 5817.CrossRefGoogle Scholar
  7. [7] F.J. Miranda, I.C.P. Margarit, O.R. Mattos, O.E. Barcia, and R. Wiart, Corrosion behavior of zinc-nickel alloy elec-trodeposited coatings, Corr. Sci, 55(1999), No. 8, p. 732.CrossRefGoogle Scholar
  8. [8] XG. Zhang, Galvanic corrosion of zinc and its alloys, J. Electrochem. Soc, 143(1996), No. 4, p. 1472.CrossRefGoogle Scholar
  9. [9] K. Wang, H.W. Pickering, and K.G. Weil, EQCM studies of the electrodeposition and corrosion of tin-zinc coatings, Electrochim. Acta, 46(2001), No. 24–25, p. 3835.CrossRefGoogle Scholar
  10. [10] EA. Pavlatou, M. Stroumbouli, P. Gyftou, and N. Spyrellis, Hardening effect induced by incorporation of SiC particles in nickel electrodeposits, J. Appl. Electrochem. 36(2006), No. 4, p. 385.CrossRefGoogle Scholar
  11. [11] A. Durairajan, A. Krishniyer, B.S. Haran, R.E. White, and B.N. Popov, Characterization of hydrogen permeation through a corrosion-resistant zinc-nickel-phosphorus aloy, Corrosion, 56(2000), No. 3, p. 283.CrossRefGoogle Scholar
  12. [12] Z. Zhang, W.H. Leng, J.F. Li, J.Q. Zhang, J.M. Wang, and C.N. Cao, Cooperation behavior of iron and phosphorus in electrodeposition of zinc-iron-phosphorus coating, Mater. Chem. Phys., 77(2003), No. 2, p. 497.CrossRefGoogle Scholar
  13. [13] M.M. Younan and T. Oki, Electrodeposition of Zn-Ni-Fe alloy in acidic chloride bath with separated anodes, J. Appl. Electrochem., 26(1996), No. 5, p. 537.CrossRefGoogle Scholar
  14. [14] M. M. Abou-Krisha, F. H. Assaf and S. A. El-Naby, Electrodeposition behavior of zinc-nickel-iron alloys from sulfate bath, J. Coat. Technol. Res., 6(2009), p. 391.CrossRefGoogle Scholar
  15. [15] M.M. Abou-Krisha, F.H. Assaf, and S.A. El-Naby, Electrodeposition and characterization of zinc-nickel-iron alloy from sulfate bath: Influence of platingbath temperature, J. Solid State Electrochem., 13(2009), No. 6, p. 879.CrossRefGoogle Scholar
  16. [16] M.M. Younan, Surface microstructure and corrosion resistance of electrodeposited ternary Zn-Ni-Co alloy, J. Appl. Electrochem., 30(2000), No. 1, p. 55.CrossRefGoogle Scholar
  17. [17] M.M. Abou-Krisha, H.M. Rageh, and EA. Matter, Electrochemical studies on the electrodeposited Zn-Ni-Co ternary alloy in different media, Surf. Coat. Technol, 202(2008), No. 15, p. 3739.CrossRefGoogle Scholar
  18. [18] N. Eliaz, K. Venkatakrishna, and A.C. Hegde, Hegde, Electroplating and characterization of Zn-Ni, Zn-Co and Zn-Ni-Co alloys, Surf. Coat. Technol, 205(2010), No. 7, p. 1969.CrossRefGoogle Scholar
  19. [19] J. Vijayakumar, S. Mohan, S.A. Kumar, S.R. Suseendiran, and S. Pavithra, Electrodeposition of Ni-Co-Sn alloy from choline chloride-based deep eutectic solvent and characterization as cathode for hydrogen evolution in alkaline solution, Int. J. Hydrogen Energy, 38(2013), No. 25, p. 10208.CrossRefGoogle Scholar
  20. [20] ZY. Zhou and T.J. O’Keefe, Modification of anomalous deposition of Zn-Ni alloy by using tin additions, Surf Coat. Technol, 96(1997), No. 2–3, p. 191.CrossRefGoogle Scholar
  21. [21] S. Fashu and R. Khan, Electrodeposition of ternary Zn-Ni-Sn alloys from an ionic liquid based on choline chloride and their characterisation, Trans. IMF, 94(2016), No. 5, p. 237.CrossRefGoogle Scholar
  22. [22] R. Solmaz and B.D. Karahan, Effect of tin additions on the corrosion behaviors of zinc-nickel coatings, [in] 19th International Metallurgy and Materials Congress Proceeding, Istanbul, 2018, p. 1224.Google Scholar
  23. [23] C.M.K. PraveenKumar, T.V. Venkatesha, K. Vathsala, and K.O. Nayana, Electrodeposition and corrosion behavior of Zn-Ni and Zn-Ni-Fe2O3 coatings, J. Coat. Technol. Res. 9(2012), No. 1, p. 71.CrossRefGoogle Scholar
  24. [24] S. Fashu, C. Gu, J.L. Zhang, M.L. Huang, X. Wang and J. Tu, Effect of EDTA and NH4Cl additives on electrodeposition of Zn-Ni films from choline chloride-based ionic liquid, Trans. Nonferrous Met. Soc. China, 25(2015), No. 6, p. 2054.CrossRefGoogle Scholar
  25. [25] CF. Han, Q. Liu, and DG. Ivey, Kinetics of Sn electrode-position from Sn(II)-citrate solutions, Electrochim. Acta, 53(2008), No. 28, p. 8332.CrossRefGoogle Scholar
  26. [26] S.T. Bahade, A.S. Lanje, and S.J. Sharma, Synthesis of SnO2 thin film by sol-gel spin coating technique for optical and ethanol gas sensing application, Int. J. Sci. Eng. Res., 3(2017), No. 7, p. 567.Google Scholar
  27. [27] K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, and J. Dutta, Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications, Mater. Res. Bull, 63(2015), p. 134.CrossRefGoogle Scholar
  28. [28] A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, CD. Bathula, A.V. Tran, and S.W. Lee, Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced pho tocatalytic activity, J. Ind. Eng. Chem., 61(2018), p. 78.CrossRefGoogle Scholar
  29. [29] K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar, N. Pande, and V. Chabukswar, Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes, J. Macromol. Sci. Part A, 51(2014), No. 12, p. 941.CrossRefGoogle Scholar
  30. [30] F. Wolfart, D.P. Dubal, M. Vidotti, and P. G′omez-Romero, Hybrid core-shell nanostructured electrodes made of polypyrrole nanotubes coated with Ni(OH)2 nanoflakes for high energy-density supercapacitors, RSC Adv. 6(2016), No. 18, p. 15062.CrossRefGoogle Scholar
  31. [31] A.S. Adekunle, J.A.O. Oyekunle, O.S. Oluwafemi, A.O. Joshua, A.O. Makinde, A.O. Ogunfowokan, MA. Eleruja, and EE. Ebenso, Comparative catalytic properties of Ni(OH)2 and NiO nanoparticles towards the degradation of nitrite (NO2-) and nitric oxide (NO), Int. J. Electrochem. Sci., 9(2014), p. 3008.Google Scholar
  32. [32] N.V. Krstajić, V.D. Jović, Lj. Gajić-Krstajić, B.M. Jović, AL. Antozzi, and G.N. Martelli, Electrodeposition of Ni-Mo alloy coatings and their characterization as cathodes for hydrogen evolution in sodium hydroxide solution, Int. J. Hydrogen Energy, 33(2008), No. 14, p. 3676.CrossRefGoogle Scholar
  33. [33] S. Costovici A.C. Manea, T. Visan, and L. Anicai, Investigation of Ni-Mo and Co-Mo alloys electrodeposition involving choline chloride based ionic liquids, Electrochim. Acta, 207(2016), p. 97.CrossRefGoogle Scholar
  34. [34] J. García-Antón, R.M. Fernández-Domene, R. Sánchez-To-var, C. Escrivà-Cerdán, R. Leiva-García, V. García, and A. Urtiaga, Improvement of the electrochemical behaviour of Zn-electroplated steel using regenerated Cr (III) passivation baths, Chem. Eng Sci, 111(2014), p. 402.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIstanbul Technical UniversityIstanbulTurkey
  2. 2.School of Engineering and Natural SciencesIstanbul Medipol UniversityIstanbulTurkey

Personalised recommendations