New high-strength Ti–Al–V–Mo alloy: from high-throughput composition design to mechanical properties

  • Di Wu
  • Wan-lin Wang
  • Li-gang Zhang
  • Zhen-yu Wang
  • Ke-chao ZhouEmail author
  • Li-bin LiuEmail author


The high-throughput diffusion-multiple technique and thermodynamics databases were used to design new high-strength Ti alloys. The composition–microstructure–property relationships of the Ti64–xMo alloys were obtained. The phase fraction and composition of the α and β phases of the Ti64–xMo alloys were calculated using the Thermo-Calc software. After aging at 600°C, the Ti64–6Mo alloy precipitated ultrafine α phases. This phenomenon was explained on the basis of the pseudo-spinodal mechanism by calculating the Gibbs energy curves of the α and β phases of the Ti64–xMo alloys at 600°C. Bulk forged Ti64–6Mo alloy exhibited high strength and moderate plasticity after α/β-phase-field solution treatment plus aging. The tensile properties of the alloy were determined by the size and morphology of the primary and secondary α phases and by the β grain size.


high-strength titanium alloy Ti–6Al–4V–xMo diffusion multiple Thermo-Calc microstructure and mechanical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge financial support from the National Key Technologies R&D Program of China (Grant No. 2016YFB0701301 and 2018YFB0704100), National Natural Science Foundation of China (Grant No. 51671218 and 51501229), National Key Basic Research Program of China (973 Program) (Grant No. 2014CB644000) and State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.


  1. [1]
    H.X. Li, X.Y. Nie, Z.B. He, K.N. Zhao, Q. Du, J.S. Zhang, and L.Z. Zhuang, Interfacial microstructure and mechanical properties of Ti–6Al–4V/Al7050 joints fabricated using the insert molding method, Int. J. Miner. Metall. Mater., 24(2017), No. 12, p. 1412.CrossRefGoogle Scholar
  2. [2]
    M.K. Ibrahim, E. Hamzah, S.N. Saud, E.N.E. Abu Bakar, and A. Bahador, Microwave sintering effects on the microstructure and mechanical properties of Ti–51at% Ni shape memory alloys, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 280.CrossRefGoogle Scholar
  3. [3]
    R.R. Boyer, An overview on the use of titanium in the aerospace industry, Mater. Sci. Eng. A, 213(1996), No. 1–2, p. 103.CrossRefGoogle Scholar
  4. [4]
    T.N. Prasanthi, C. Sudha, and S. Saroja, Effect of alloying elements on interdiffusion phenomena in explosive clads of 304LSS/Ti–5Ta–2Nb alloy, J. Mater. Sci., 51(2016), No. 11, p. 5290.CrossRefGoogle Scholar
  5. [5]
    H.P. Duan, H.X. Xu, W.H. Su, Y.B. Ke, Z.Q. Liu, and H.H. Song, Effect of oxygen on the microstructure and mechanical properties of Ti–23Nb–0.7Ta–2Zr alloy, Int. J. Miner. Metall. Mater., 19(2012), No. 12, p. 1128.CrossRefGoogle Scholar
  6. [6]
    S.L. Semiatin, P.N. Fagin, M.G. Glavicic, I.M. Sukonnik, and O.M. Ivasishin, Influence on texture on beta grain growth during continuous annealing of Ti–6Al–4V, Mater. Sci. Eng. A, 299(2001), No. 1–2, p. 225.CrossRefGoogle Scholar
  7. [7]
    Y.J. Lai, S.W. Xin, P.X. Zhang, Y.Q. Zhao, F.J. Ma, X.H. Liu, and Y. Feng, Recrystallization behavior of Ti40 burn-resistant titanium alloy during hot working process, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 581.CrossRefGoogle Scholar
  8. [8]
    T. Seshacharyulu, S.C. Medeiros, J.T. Morgan, J.C. Malas, W.G. Frazier, and Y.V.R.K. Prasad, Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V, Mater. Sci. Eng. A, 279(2000), No. 1–2, p. 289.CrossRefGoogle Scholar
  9. [9]
    A. Nocivin, I. Cinca, D. Raducanu, V.D. Cojocaru, and I.A. Popovici, Mechanical properties of a Gum-type Ti–Nb–Zr–Fe–O alloy, Int. J. Miner. Metall. Mater., 24(2017), No. 8, p. 909.CrossRefGoogle Scholar
  10. [10]
    S. Raghunathan, R.J. Dashwood, M. Jackson, S.C. Vogel, and D. Dye, The evolution of microtexture and macrotexture during subtransus forging of Ti–10V–2Fe–3Al, Mater. Sci. Eng. A, 488(2008), No. 1–2, p. 8.CrossRefGoogle Scholar
  11. [11]
    G.T. Terlinde, T.W. Duerig, and J.C. Williams, Microstructure, tensile deformation, and fracture in aged ti 10V–2Fe–3Al, Metall. Trans. A, 14(1983), No. 10, p. 2101.CrossRefGoogle Scholar
  12. [12]
    B. He, X.J. Tian, X. Cheng, J. Li, and H.M. Wang, Effect of weld repair on microstructure and mechanical properties of laser additive manufactured Ti-55511 alloy, Mater. Des., 119(2017), p. 437.CrossRefGoogle Scholar
  13. [13]
    S. Nag, R. Banerjee, J.Y. Hwang, M. Harper, and H.L. Fraser, Elemental partitioning between α and β phases in the Ti–5Al–5Mo–5V–3Cr–0.5Fe (Ti-5553) alloy, Philos. Mag., 89(2009), No. 6, p. 535.CrossRefGoogle Scholar
  14. [14]
    F.W. Chen, G.L. Xu, X.Y. Zhang, K.C. Zhou, and Y.W. Cui, Effect of α morphology on the diffusional β↔α transformation in Ti-55531 during continuous heating: Dissection by dilatometer test, microstructure observation and calculation, J. Alloys Compd., 702(2017), No. 25, p. 352.CrossRefGoogle Scholar
  15. [15]
    J.K. Fan, J.S. Li, H.C. Kou, K. Hua, and B. Tang, The interrelationship of fracture toughness and microstructure in a new near β titanium alloy Ti–7Mo–3Nb–3Cr–3Al, Mater. Charact., 96(2014), p. 93.Google Scholar
  16. [16]
    B. Cherukuri, R. Srinivasan, S. Tamirisakandala, and D.B. Miracle, The influence of trace boron addition on grain growth kinetics of the beta phase in the beta titanium alloy Ti–15Mo–2.6Nb–3Al–0.2Si, Scripta Mater., 60(2009), No. 7, p. 496.CrossRefGoogle Scholar
  17. [17]
    N.G. Jones, R.J. Dashwood, M. Jackson, and D. Dye, Development of chevron-shaped α precipitates in Ti–5Al–5Mo–5V–3Cr, Scripta Mater., 60(2009), No. 7, p. 571.CrossRefGoogle Scholar
  18. [18]
    A. Dehghan-Manshadi and R.J. Dippenaar, Development of α-phase morphologies during low temperature isothermal heat treatment of a Ti–5Al–5Mo–5V–3Cr alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p 1833.Google Scholar
  19. [19]
    J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li, Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333, Mater. Des., 49(2013), p. 945.CrossRefGoogle Scholar
  20. [20]
    J.I. Qazi, H.J. Rack, and B. Marquardt, High-strength metastable beta-titanium alloys for biomedical applications, JOM, 56(2004), No. 11, p. 49.CrossRefGoogle Scholar
  21. [21]
    R. Banerjee, S. Nag, J. Stechschulte, and H.L. Fraser, Strengthening mechanisms in Ti–Nb–Zr–Ta and Ti–Mo–Zr–Fe orthopaedic alloys, Biomaterials, 25(2004), No. 17, p. 3413.CrossRefGoogle Scholar
  22. [22]
    T. Zhou, M. Aindow, S.P. Alpay, M.J. Blackburn, and M.H. Wu, Pseudo-elastic deformation behavior in a Ti/Mo-based alloy, Scripta Mater., 50(2004), No. 3, p. 343.CrossRefGoogle Scholar
  23. [23]
    T. Oyama, C. Watanabe, and R. Monzen, Growth kinetics of ellipsoidal ω-precipitates in a Ti–20 wt%Mo alloy under compressive stress, J. Mater. Sci., 51(2016), No. 19, p. 8880.CrossRefGoogle Scholar
  24. [24]
    C.H. Wang, C.D. Yang, M. Liu, X. Li, P.F. Hu, A.M. Russell, and G.H. Cao, Martensitic microstructures and mechanical properties of as-quenched metastable β-type Ti–Mo alloys, J. Mater. Sci., 51(2016), No. 14, p. 6886.CrossRefGoogle Scholar
  25. [25]
    R. Monzen, R. Kawai, T. Oyama, and C. Watanabe, Tensile-stress-induced growth of ellipsoidal ω-precipitates in a Ti–20wt%Mo Alloy, J. Mater. Sci., 51(2016), No. 5, p. 2490.CrossRefGoogle Scholar
  26. [26]
    J.C. Zhao, A combinatorial approach for efficient mapping of phase diagrams and properties, J. Mater. Res., 16(2001), No. 6, p. 1565.CrossRefGoogle Scholar
  27. [27]
    J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput diffusion multiples, Mater. Today, 8(2005), No. 10, p. 28.CrossRefGoogle Scholar
  28. [28]
    J.C. Zhao, X. Zheng, and D.G. Cahill, High-throughput measurements of materials properties, JOM, 63(2011), No. 3, p. 40.CrossRefGoogle Scholar
  29. [29]
    X. Zheng, D.G. Cahill, P. Krasnochtchekov, R.S. Averback, and J.C. Zhao, High-throughput thermal conductivity measurements of nickel solid solutions and the applicability of the Wiedemann-Franz law, Acta Mater., 55(2007), No. 15, p. 5177.CrossRefGoogle Scholar
  30. [30]
    X.D. Zhang, L.B. Liu, J.C. Zhao, J.L. Wang, F. Zheng, and Z.P. Jin, High-efficiency combinatorial approach as an effective tool for accelerating metallic biomaterials research and discovery, Mater. Sci. Eng. C, 39(2014), No. 1, p. 273.CrossRefGoogle Scholar
  31. [31]
    D. Wu, L.B. Liu, L.G. Zhang, L.J. Zeng, and X. Shi, Investigation of the influence of Cr on the microstructure and properties of Ti6Al4VxCr alloys with a combinatorial approach, J. Mater. Eng. Perform., 26(2017), No. 9, p. 4364.CrossRefGoogle Scholar
  32. [32]
    C. Wang, N. Li, Y. Cui, and M.T. Pérez-Prado, Effect of solutes on the rate sensitivity in Ti–xAl–yMo–zV and Ti–xAl–yMo–zCr β–Ti alloys, Scripta Mater., 149(2018), p. 129.CrossRefGoogle Scholar
  33. [33]
    J.C. Williams and B.S. Hickman, Tempering behavior of orthorhombic martensite in titanium alloys, Metall. Mater. Trans. B, 1(1970), No. 9, p. 2648.Google Scholar
  34. [34]
    H.Y. Kim, Y. Ikehara, J.I. Kim, H. Hosoda, and S. Miyazaki, Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys, Acta Mater., 54(2006), No. 9, p. 2419.CrossRefGoogle Scholar
  35. [35]
    W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.CrossRefGoogle Scholar
  36. [36]
    W.F. Ho, S.C. Wu, H.H. Chang, and H.C. Hsu, Structure and mechanical properties of Ti–5Cr based alloy with Mo addition, Mater. Sci. Eng. C, 30(2010), No. 6, p. 904.CrossRefGoogle Scholar
  37. [37]
    Z. Du, S. Xiao, L. Xu, J. Tian, F. Kong, and Y. Chen, Effect of heat treatment on microstructure and mechanical properties of a new β high strength titanium alloy, Mater. Des., 55(2014), No. 55, p. 183.CrossRefGoogle Scholar
  38. [38]
    W.F. Ho, C.P. Ju, and J.H. Lin, Structure and properties of cast binary Ti–Mo alloys, Biomaterials, 20(1999), No. 22, p. 2115.CrossRefGoogle Scholar
  39. [39]
    Y. Ni and A.G. Khachaturyan, From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition, Nat. Mater., 8(2009), No. 5, p. 410.CrossRefGoogle Scholar
  40. [40]
    N.T.C. Oliveira and A.C. Guastaldi, Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications, Acta Biomater., 5(2009), No. 1, p. 399.CrossRefGoogle Scholar
  41. [41]
    S.K. Kar, A. Ghosh, N. Fulzele, and A. Bhattacharjee, Quantitative microstructural characterization of a near beta Ti alloy, Ti-5553 under different processing conditions, Mater. Charact., 81(2013), No. 4, p. 37.CrossRefGoogle Scholar
  42. [42]
    C.Y. Wang, L.W. Yang, Y.W. Cui, and M.T. Pérez-Prado, High throughput analysis of solute effects on the mechanical behavior and slip activity of beta titanium alloys, Mater. Des., 137(2017), p. 371.CrossRefGoogle Scholar
  43. [43]
    L. Mora, C. Quesne, C. Haut, C. Servant, and R. Penelle, Relationships among thermomechanical treatments, microstructure, and tensile properties of a near beta-titanium alloy: β-CEZ: Part I. relationships between thermomechanical treatments and microstructure, J. Mater. Res., 11(1996), No. 1, p. 89.CrossRefGoogle Scholar
  44. [44]
    G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, and G.V.S.N. Rao, Tensile and fracture toughness of high strength β titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures, Mater. Des., 47(2013), p. 323.CrossRefGoogle Scholar
  45. [45]
    J. Huang, Z. Wang, and K. Xue, Cyclic deformation response and micromechanisms of Ti alloy Ti–5Al–5V–5Mo–3Cr–0.5Fe, Mater. Sci. Eng. A, 528(2011), No. 29–30, p. 8723.CrossRefGoogle Scholar
  46. [46]
    M. Jackson, N.G. Jones, D. Dye, and R.J. Dashwood, Effect of initial microstructure on plastic flow behaviour during isothermal forging of Ti–10V–2Fe–3Al, Mater. Sci. Eng. A, 501(2009), No. 1–2, p. 248.CrossRefGoogle Scholar
  47. [47]
    D. Qin, Y. Lu, D. Guo, L. Zheng, Q. Liu, and L. Zhou, Tensile deformation and fracture of Ti–5Al–5V–5Mo–3Cr–1.5Zr–0.5Fe alloy at room temperature, Mater. Sci. Eng. A, 587(2013), p. 100.CrossRefGoogle Scholar
  48. [48]
    W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of molybdenum content on the structure and mechanical properties of as-cast Ti–10Zr-based alloys for biomedical applications, Mater. Sci. Eng. C, 32(2012), No. 3, p. 517.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.School of Material Science and EngineeringCentral South UniversityChangshaChina
  3. 3.Key Laboratory of Non-Ferrous Metallic Materials Science and EngineeringMinistry of EducationChangshaChina
  4. 4.State Key Laboratory of Powder MetallurgyChangshaChina

Personalised recommendations