Advertisement

Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy

  • Chang-qing HuangEmail author
  • Jia-xing Liu
  • Xiao-dong Jia
Article
  • 18 Downloads

Abstract

The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrys-tallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization.

Keywords

microstructure texture misorientation dynamic recrystallization microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors appreciate financial support from the Natural Science Foundation of China (No. 51275533), the State Key Laboratory of High-Performance Complex Manufacturing (No. zzyjkt2013–10B), Central South University, China, and also the portion provided by the Academician Workstation Foundation of Yinhai Aluminum Industry Co., Ltd., Liuz-hou, China.

References

  1. [1]
    M.A.J. Taleghani, E.M.R. Navas, M. Salehi, and J.M. Torralba, Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures, Mater. Sci. Eng. A, 534(2012), p. 624.CrossRefGoogle Scholar
  2. [2]
    J.Y. Park, S.H. Hong, and D.N. Lee, Analysis of deformation and recrystallization textures of shear deformed 1050 aluminum alloy, Mater. Sci. Forum, 408–412(2002), no. 4, p. 1431.CrossRefGoogle Scholar
  3. [3]
    W.C. Liu and J.G. Morris, Effect of initial texture on the re-crystallization texture of cold rolled AA 5182 aluminum alloy, Mater. Sci. Eng. A, 402(2005), No. 1–2, p. 215.CrossRefGoogle Scholar
  4. [4]
    P.P. Bhattacharjee, R.K. Ray, and N. Tsuji, Cold rolling and recrystallization textures of a Ni–5 at.% Walloy, Acta Mater., 57(2009), no. 7, p. 2166.CrossRefGoogle Scholar
  5. [5]
    Q. Liu, D.J. Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater., 46(1998), no. 16, p. 5819.CrossRefGoogle Scholar
  6. [6]
    O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review, Mater. Sci. Eng. A, 336(2002), No. 1–2, p. 249.CrossRefGoogle Scholar
  7. [7]
    L.H. Liao, X.F. Zheng, Y.L. Kang, W. Liu, Y. Yan, and Z.Y. Mo, Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate, Int. J. Miner. Metall. Mater., 25(2018), no. 6, p. 652.CrossRefGoogle Scholar
  8. [8]
    O. Engler, M. Crumbach, and S. Li, Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, Acta Mater., 53(2005), no. 8, p. 2241.CrossRefGoogle Scholar
  9. [9]
    H.O. Asbeck and H. Mecking, Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example, Mater. Sci. Eng., 34(1978), no. 2, p. 111.CrossRefGoogle Scholar
  10. [10]
    J.N. Qin, D. Zhang, G.D. Zhang, and J.C. Lee, Effect of temperature on texture formation of 6061 aluminum sheet in equal-channel angular pressing, Mater. Sci. Eng. A., 408(2005), No. 1–2, p. 79.CrossRefGoogle Scholar
  11. [11]
    K. Abib, J.A.M. Balanos, B. Alili, and D. Bradai, On the mi-crostructure and texture of Cu–Cr–Zr alloy after severe plastic deformation by ECAP, Mater. Charact., 112(2016), p. 252.CrossRefGoogle Scholar
  12. [12]
    M. Kuroda and S. Ikawa, Texture optimization of rolled aluminum alloy sheets using a genetic algorithm, Mater. Sci. Eng. A., 385(2004), No. 1–2, p. 235.CrossRefGoogle Scholar
  13. [13]
    Y. Zhang, X.P. Wang, F.T. Kong, L.L. Sun, and Y.Y. Chen, Microstructure, texture and mechanical properties of Ti–43Al–9V–0.2Y alloy hot-rolled at various temperatures, J. Alloys Compd., 777(2019), p. 795.CrossRefGoogle Scholar
  14. [14]
    P. Angerer, E. Neubauer, L.G. Yu, and K.A. Khor, Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing, Int. J. Refract. Met. Hard Mater., 25(2007), no. 4, p. 280.CrossRefGoogle Scholar
  15. [15]
    X.M. Duan, D.C. Jia, Z.L. Wu, Z. Tian, Z.H. Yang, S.J. Wang, and Y. Zhou, Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics, Scripta Mater., 68(2013), no. 2, p. 104.CrossRefGoogle Scholar
  16. [16]
    J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, and R.S. Chen, Unusual cold rolled texture in an Mg–2.0Zn–0.8Gd sheet, Scripta Mater., 127(2017), p. 146.CrossRefGoogle Scholar
  17. [17]
    R. Singh, R.K. Khatirkar, R.N. Chouhan, and S.G. Sapate, Development of cube recrystallization texture in strip cast AA3004 aluminium alloy, Trans. Indian Inst. Met., 69(2016), no. 10, p. 1833.CrossRefGoogle Scholar
  18. [18]
    H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, and G.D. Wang, Formation of {001} <510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel, Mater. Lett., 81(2012), p. 65.CrossRefGoogle Scholar
  19. [19]
    V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A., 679(2017), p. 56.CrossRefGoogle Scholar
  20. [20]
    J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, and M. Ferry, Texture balancing in a fcc/bcc multilayered composite produced by accumulative roll bonding, Acta Mater., 123(2017), p. 11.CrossRefGoogle Scholar
  21. [21]
    H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, and G.D. Wang, Effects of initial micro-structure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel, J. Magn. Magn. Mater., 406(2016), p. 149.CrossRefGoogle Scholar
  22. [22]
    X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), no. 2, p. 164.CrossRefGoogle Scholar
  23. [23]
    J. de Paula Martins, A.L.M. de Carvalho, and A.F. Padilha, Texture analysis of cold rolled and annealed aluminum alloy produced by twin-roll casting, Mater. Res., 15(2012), no. 1, p. 97.CrossRefGoogle Scholar
  24. [24]
    D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe–3%Si steel induced by second-phase particles, Int. J. Miner. Metall. Mater., 23(2016), no. 12, p. 1397.CrossRefGoogle Scholar
  25. [25]
    X.H. Yue, C.F. Liu, H.H. Liu, S.F. Xiao, Z.H. Tang, and T. Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al–Zr–La alloys, Int. J. Miner. Metall. Mater., 25(2018), no. 2, p. 236.CrossRefGoogle Scholar
  26. [26]
    Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd., 640(2015), p. 101.CrossRefGoogle Scholar
  27. [27]
    K. Huang and R.E. Logé, A review of dynamic recrystalliza-tion phenomena in metallic materials, Mater. Des., 111(2016), p. 548.CrossRefGoogle Scholar
  28. [28]
    P.R. Rios, S. Fulvio Jr, H.R.Z. Sandim, R.L. Plaut, and A.F. Padilha, Nucleation and growth during recrystallization, Mater. Res., 8(2005), no. 3, p. 225.CrossRefGoogle Scholar
  29. [29]
    X. Huang, K. Suzuki, and Y. Chino, Static recrystallization behavior of hot-rolled Mg–Zn–Ce magnesium alloy sheet, J. Alloys Compd., 724(2017), p. 981.CrossRefGoogle Scholar
  30. [30]
    P. Li, X. Wang, K.M. Xue, Y. Tian, and Y.C. Wu, Micro-structure and recrystallization behavior of pure W powder processed by high-pressure torsion, Int. J. Refract. Met. Hard Mater., 54(2016), p. 439.CrossRefGoogle Scholar
  31. [31]
    J.B. Liu, X.H. Liu, W. Liu, Y.W. Zeng, and K.Y. Shu, Microstructure and hardness evolution during isothermal process at 700 degrees C for Fe–24Mn–0.7Si–1.0Al TWIP steel, Mater. Charact., 61(2010), no. 12, p. 1356.CrossRefGoogle Scholar
  32. [32]
    Z.J. Shao, H.P. Liu, X.C. He, B. Zhou, Y. Li, S.Z. Zhang, M.J. Li, and S.J. Li, Microstructure and finite element analysis of hot continuous rolling of doped tungsten rod, Int. J. Miner. Metall. Mater., 26(2019), no. 3, p. 369.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Chang-qing Huang
    • 1
    • 2
    • 3
    Email author
  • Jia-xing Liu
    • 1
    • 2
  • Xiao-dong Jia
    • 2
    • 3
  1. 1.School of Mechanical and Electrical EngineeringCentral South UniversityChangshaChina
  2. 2.State Key Laboratory of High-performance Complicated ManufacturingCentral South UniversityChangshaChina
  3. 3.Light Alloys Research InstituteCentral South UniversityChangshaChina

Personalised recommendations