Electrochemical behavior and corrosion resistance of IrO2-ZrO2 binary oxide coatings for promoting oxygen evolution in sulfuric acid solution

  • Bao Liu
  • Shuo Wang
  • Cheng-yan WangEmail author
  • Bao-zhong MaEmail author
  • Yong-qiang Chen


In this study, we prepared Ti/IrO2-ZrO2 electrodes with different ZrO2 contents using zirconium-n-butoxide (C16H36O4Zr) and chloroiridic acid (H2IrCl6) via a sol-gel route. To explore the effect of ZrO2 content on the surface properties and electrochemical behavior of electrodes, we performed physical characterizations and electrochemical measurements. The obtained results revealed that the binary oxide coating was composed of rutile IrO2, amorphous ZrO2, and an IrO2-ZrO2 solid solution. The IrO2-ZrO2 binary oxide coatings exhibited cracked structures with flat regions. A slight incorporation of ZrO2 promoted the crystallization of the active component IrO2. However, the crystallization of IrO2 was hindered when the added ZrO2 content was greater than 30at%. The appropriate incorporation of ZrO2 enhanced the electrocatalytic performance of the pure IrO2 coating. The Ti/70at%IrO2-30at%ZrO2 electrode, with its large active surface area, improved electrocatalytic activity, long service lifetime, and especially, lower cost, is the most effective for promoting oxygen evolution in sulfuric acid solution.


electrode IrO2-ZrO2 oxygen evolution reaction electrochemical behavior corrosion resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. U1802253, 51974025 and 51674026), the Guangxi Innovation-Driven Development Project (No. AA18242042-1), the Beijing Natural Science Foundation of China (No. 2182040), and the Fundamental Research Funds for the Central Universities (FRF22TT-19-001).


  1. [1]
    D. Devilliers and E. Mahé, Modified titanium electrodes: Application to Ti/TiO2/PbO2 dimensionally stable anodes, Electrochim. Acta, 55(2010), No. 27, p. 8207.CrossRefGoogle Scholar
  2. [2]
    Y. Zhao, Y.F. E, L.Z. Fan, Y.F. Qiu, and S.H. Yang, A new route for the electrodeposition of platinum-nickel alloy nanoparticles on multi-walled carbon nanotubes, Electrochim. Acta, 52(2007), No. 19, p. 5873.CrossRefGoogle Scholar
  3. [3]
    J. L. Lu, S.F. Lu, D.L. Wang, M. Yang, Z.L. Liu, C.W. Xu, and S.P. Jiang, Nano-structured PdxP1−x/Ti anodes prepared by electrodeposition for alcohol electrooxidation, Electrochim. Acta, 54(2009), No. 23, p. 5486.CrossRefGoogle Scholar
  4. [4]
    E. Fabbri, A. Habereder, K. Waltar, R. Kötz, and T.J. Schmidt, Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction, Catal. Sci. Technol., 4(2014), No. 11, p. 3800.CrossRefGoogle Scholar
  5. [5]
    S. Siracusano, V. Baglio, A. Di Blasi, N. Briguglio, A. Stassi, R. Ornelas, E. Trifoni, V. Antonucci, and A.S. Aricò, Electrochemical characterization of single cell and short stack PEM electrolyzers based on a nanosized IrO2 anode electrocatalyst, Int. J. Hydrogen Energy, 35(2010), No. 11, p. 5558.CrossRefGoogle Scholar
  6. [6]
    J. Shu, Z.L. Qiu, S.Z. Lv, K.Y. Zhang, and D.P. Tang, Plasmonic enhancement coupling with defect-engineered TiO2−x: A mode for sensitive photoelectrochemical biosensing, Anal. Chem., 90(2018), No. 4, p. 2425.CrossRefGoogle Scholar
  7. [7]
    G.N. Cai, Z.Z. Yu, R.R. Ren, and D.P. Tang, Exciton-plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO2 for photoelectrochemical aptasensing of prostate-specific antigen, ACS Sens., 3(2018), No. 3, p. 632.CrossRefGoogle Scholar
  8. [8]
    Z.L. Qiu, J. Shu, and D.P. Tang, Near-infrared-to ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core-shell NaYF4:Yb, Tm@TiO2 upconversion microrods, Anal. Chem., 90(2018), No. 1, p. 1021.CrossRefGoogle Scholar
  9. [9]
    J. Tang, D.P. Tang, R. Niessner, and D. Knopp, A novel strategy for ultra-sensitive electrochemical immunoassay of biomarkers by coupling multifunctional iridium oxide (IrOx) nanospheres with catalytic recycling of self-produced reactants, Anal. Bioanal. Chem., 400(2011), No. 7, p. 2041.CrossRefGoogle Scholar
  10. [10]
    X.M. Chen and G.H. Chen, Stable Ti/RuO2-Sb2O5-SnO2 electrodes for O2 evolution, Electrochim. Acta, 50(2005), No. 20, p. 4155.CrossRefGoogle Scholar
  11. [11]
    F. Moradi and C. Dehghanian, Addition of IrO2 to RuO2 + TiO2 coated anodes and its effect on electrochemical performance of anodes in acid media, Prog. Nat. Sci: Mater. Int., 24(2014), No. 2, p. 134.CrossRefGoogle Scholar
  12. [12]
    L.M. Gajić-Krstajić, T.L. Trišović, and N.V. Krstajić, Spectrophotometric study of the anodic corrosion of Ti/RuO2 electrode in acid sulfate solution, Corros. Sci., 46(2004), No. 1, p. 65.CrossRefGoogle Scholar
  13. [13]
    R. Shan, Z.C. Zhang, M. Kan, T.Y. Zhang, Q. Zan, and Y.X. Zhao, A novel highly active nanostructured IrO2/Ti anode for water oxidation, Int. J. Hydrogen Energy, 40(2015), No. 41, p. 14279.CrossRefGoogle Scholar
  14. [14]
    C.E. Vallet, B.V. Tilak, R.A. Zuhr, and C.P. Chen, Rutherford backscattering spectroscopic study of the failure mechanism of (RuO2 + TiO2)/Ti thin film electrodes in H2SO4 solutions, J. Electrochem. Soc., 144(1997), No. 4, p. 1289.CrossRefGoogle Scholar
  15. [15]
    B.S. Li, A. Lin, and F.X. Gan, Preparation and characterization of Ti/IrO2-Ta2O5 anodes for oxygen evolution used to sulfate electrolysis, Rare Met. Mater. Eng., 36(2007), No. 2, p. 245.Google Scholar
  16. [16]
    J. J. Zhang, J. M. Hu, J. Q. Zhang, and C.N. Cao, IrO2-SiO2 binary oxide films: Geometric or kinetic interpretation of the improved electrocatalytic activity for the oxygen evolution reaction, Int. J. Hydrogen Energy, 36(2011), No. 9, p. 5218.CrossRefGoogle Scholar
  17. [17]
    C. Iwakura and K. Sakamoto, Effect of active layer composition on the service life of (SnO2 and RuO2)-coated Ti electrodes in sulfuric acid solution, J. Electrochem. Soc., 132(1985), No. 10, p. 2420.CrossRefGoogle Scholar
  18. [18]
    G.C. Pathiraja, N. Nanayakkara, and A. Wijayasinghe, Oxygen evolution reaction of Ti/IrO2-SnO2 electrodes: a study by cyclic voltammetry, Bull. Mater. Sci., 39(2016), No. 3, p. 803.CrossRefGoogle Scholar
  19. [19]
    H.A. Mazhari, K. Jafarzadeh, and S.M. Mirali, An investigation of the effect of RuO2 on the deactivation and corrosion mechanism of a Ti/IrO2-Ta2O5 coating in an OER application, J. Electroanal. Chem., 777(2016), p. 67.CrossRefGoogle Scholar
  20. [20]
    G.P. Vercesi, J. Y. Salamin, and C. Comninellis, Morphological and microstructural the Ti/IrO2-Ta2O5 electrode: effect of the preparation temperature, Electrochim. Acta, 36(1991), No. 5–6, p. 991.CrossRefGoogle Scholar
  21. [21]
    R.E. Palma-Goyes, J. Vazquez-Arenas, C. Ostos, R.A. Torres-Palma, and I. González, The effects of ZrO2 on the electrocatalysis to yield active chlorine species on Sb2O5-doped Ti/RuO2 anodes, J. Electrochem. Soc, 163(2016), No. 9, p. H818.CrossRefGoogle Scholar
  22. [22]
    L.D. Burke and M. McCarthy, Oxygen gas evolution at, and deterioration of, RuO2/ZrO2-coated titanium anodes at elevated temperature in strong base, Electrochim. Acta, 29(1984), No. 2, p. 211.CrossRefGoogle Scholar
  23. [23]
    J. B. Wang, W.P. Zhu, X.W. He, and S.X. Yang, Catalytic wet air oxidation of acetic acid over different ruthenium catalysts, Catal. Commun., 9(2008), No. 13, p. 2163.CrossRefGoogle Scholar
  24. [24]
    Y.Q. Shao, Z.Y. Yi, C. He, J. Q. Zhu, and D. Tang, Effects of annealing temperature on the structure and capacitive performance of nanoscale Ti/IrO2-ZrO2 electrodes, J. Am. Ceram. Soc., 98(2015), No. 5, p. 1485.CrossRefGoogle Scholar
  25. [25]
    C.H. Comninellis and G.P. Vercesi, Characterization of DSA®-type oxygen evolving electrodes: choice of a coating, J. Appl. Electrochem., 21(1991), No. 4, p. 335.CrossRefGoogle Scholar
  26. [26]
    A.J. Terezo and E.C. Pereira, Preparation and characterisation of Ti/RuO2 anodes obtained by sol-gel and conventional routes, Mater. Lett., 53(2002), No. 4–5, p. 339.CrossRefGoogle Scholar
  27. [27]
    B. Liu, C.Y. Wang, Y.Q. Chen, B.Z. Ma, and J. L. Zhang, Effects of calcination temperature on the surface morphology and electrocatalytic properties of Ti/IrO2-ZrO2 anodes in an oxygen evolution application, J. Electrochem. Soc., 165(2018), No. 14, p. F1192.CrossRefGoogle Scholar
  28. [28]
    G.R.P. Malpass and A.J. Motheo, Cyclic voltammetric behavior of dimensionally stable anodes in the presence of C1–C3 aldehydes, J. Braz. Chem. Soc., 14(2003), No. 4, p. 645.CrossRefGoogle Scholar
  29. [29]
    W.H. Lee and H. Kim, Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions, Catal. Commum., 12(2011), No. 6, p. 408.CrossRefGoogle Scholar
  30. [30]
    W. Xu, G.M. Haarberg, S. Sunde, F. Seland, A.P. Ratvik, E. Zimmerman, T. Shimamune, J. Gustavsson, and T. Akre, Calcination temperature dependent catalytic activity and stability of IrO2-Ta2O5 anodes for oxygen evolution reaction in aqueous sulfate electrolytes, J. Electrochem. Soc, 164(2017), No. 9, p. F895.CrossRefGoogle Scholar
  31. [31]
    L.K. Wu, X.Y. Liu, and J.M. Hu, Electrodeposited SiO2 film: a promising interlayer of a highly active Ti electrode for the oxygen evolution reaction, J. Mater. Chem. A, 4(2016), No. 30, p. 11949.CrossRefGoogle Scholar
  32. [32]
    L.A. Da Silva, V.A. Alves, M.A.P. Da Silva, S. Trasatti, and J.F.C. Boodts, Morphological chemical and electrochemical properties of Ti/(TiO2-IrO2) electrodes, Can. J. Chem., 75(1997), No. 11, p. 1483.CrossRefGoogle Scholar
  33. [33]
    V. Pfeifer, T.E. Jones, J.J. Velasco Vélez, C. Massué, M.T. Greiner, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Hävecker, A. Knop-Gericke, and R. Schlögl, The electronic structure of iridium oxide electrodes active in water splitting, Phys. Chem. Chem. Phys., 18(2016), p. 2292.CrossRefGoogle Scholar
  34. [34]
    R.D. Xu, L.P. Huang, J.F. Zhou, P. Zhan, Y.Y. Guan, and Y. Kong, Effects of tungsten carbide on electrochemical properties and microstructural features of Al/Pb-PANI-WC composite inert anodes used in zinc electrowinning, Hydrometallurgy, 125–126(2012), p. 8.CrossRefGoogle Scholar
  35. [35]
    T. Audichon, S. Morisset, T.W. Napporn, K.B. Kokoh, C. Comminges, and C. Morals, Effect of adding CeO2 to RuO2-IrO2 mixed nanocatalysts: activity towards the oxygen evolution reaction and stability in acidic media, ChemElectroChem, 2(2015), No. 8, p. 1128.CrossRefGoogle Scholar
  36. [36]
    E. Rasten, G. Hagen, and R. Tunold, Electrocatalysts in water electrolysis with solid polymer electrolyte, Electrochim. Acta, 48(2003), No. 25–26, p. 3945.CrossRefGoogle Scholar
  37. [37]
    M.H.P. Santana, L.A. De Faria, and J.F.C. Boodts, Effect of preparation procedure of IrO2-Nb2O5 anodes on surface and electrocatalytic properties, J. Appl. Electrochem., 35(2005), No. 9, p. 915.CrossRefGoogle Scholar
  38. [38]
    L.M. Da Silva, L.A. De Faria, and J.F.C. Boodts, Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency, Electrochim. Acta, 48(2003), No. 6, p. 699.CrossRefGoogle Scholar
  39. [39]
    T.A.F. Lassali, J.F.C. Boodts, and L.O.S. Bulhoes, Charging processes and electrocatalytic properties of IrO2/TiO2/SnO2 oxide films investigated by in situ AC impedance measurements, Electrochim. Acta, 44(1999), No. 24, p. 4203.CrossRefGoogle Scholar
  40. [40]
    J. M. Hu, H.M. Meng, J.Q. Zhang, and C.N. Cao, Degradation mechanism of long service life Ti/IrO2-Ta2O5 oxide anodes in sulphuric acid, Corros. Sci., 44(2002), No. 8, p. 1655.CrossRefGoogle Scholar
  41. [41]
    Y.Y. Hou, J.M. Hu, L. Liu, J.Q. Zhang, and C.N. Cao, Effects of calcination temperature on electrocatalytic activities of Ti/IrO2 electrodes in methanol aqueous solutions, Electrochim. Acta, 51(2006), No. 28, p. 6258.CrossRefGoogle Scholar
  42. [42]
    S. Palmas, A.M. Polcaro, F. Ferrara, J.R. Ruiz, F. Delogu, C. Bonatto-Minella, and G. Mulas, Electrochemical performance of mechanically treated SnO2 powers for OER in acid solution, J. Appl. Electrochem., 38(2008), No. 7, p. 907.CrossRefGoogle Scholar
  43. [43]
    B. Piela and P.K. Wrona, Capacitance of the gold electrode in 0.5 M H2SO4 solution: a.c. impedance studies, J. Appl. Electroanal. Chem., 388(1995), No. 1–2, p. 69.CrossRefGoogle Scholar
  44. [44]
    H.T. Yang, H.R. Liu, Z.C. Guo, B.M. Chen, Y.C. Zhang, H. Huang, X.L. Li, R.C. Fu, and R.D. Xu, Electrochemical behavior of rolled Pb-0.8%Ag anodes, Hydrometallurgy, 140(2013), p. 144.CrossRefGoogle Scholar
  45. [45]
    V.A. Alves, L.A. da Silva, and J.F.C. Boodts, Surface characterisation of IrO2/TiO2/CeO2 oxide electrodes and Faradaic impedance investigation of the oxygen evolution reaction from alkaline solution, Electrochim. Acta, 44(1998), No. 8–9, p. 1525.CrossRefGoogle Scholar
  46. [46]
    Z.G. Ye, H.M. Meng, and D.B. Sun, New degradation mechanism of Ti/IrO2-MnO2 anode for oxygen evolution in 0.5 M H2SO4 solution, Electrochim. Acta, 53(2008), No. 18, p. 5639.CrossRefGoogle Scholar
  47. [47]
    G.N. Martelli, R. Ornelas, and G. Faita, Deactivation mechanisms of oxygen evolving anodes at high current densities, Electrochim. Acta, 39(1994), No. 11–12, p. 1551.CrossRefGoogle Scholar
  48. [48]
    R. Kötz, H. Neff, and S. Stucki, Anodic iridium oxide films: XPS-studies of oxidation state changes and O2-evolution, J. Electrochem. Soc., 131(1984), No. 1, p. 72.CrossRefGoogle Scholar
  49. [49]
    Y. Song, G. Wei, and R. Xiong, Structure and properties of PbO2-CeO2 anodes on stainless steel, Electrochim. Acta, 52(2007), No. 24, p. 7022.CrossRefGoogle Scholar
  50. [50]
    H.T. Yang, B.M. Chen, H.R. Liu, Z.C. Guo, Y.C. Zhang, X.L. Li, and R.D. Xu, Effects of manganese nitrate concentration on the performance of an aluminum substrate β-PbO2-MnO2-WC-ZrO2 composite electrode material, Int. J. Hydrogen Energy, 39(2014), No. 7, p. 3087.CrossRefGoogle Scholar
  51. [51]
    W. Zhang, E. Ghali, and G. Houlachi, Review of oxide coated catalytic titanium anodes performance for metal electrowinning, Hydrometallurgy, 169(2017), p. 456.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Beijing Key Laboratory of Rare and Precious Metals Green Recycling and ExtractionUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations