Novelty phase synthesis mechanism and morphology in resin-bonded Al-Al2O3-TiO2 composites at high temperatures under flowing N2

  • Yang Sun
  • Yong LiEmail author
  • Li-xin Zhang
  • Shi-ming Li
  • Ming-wei Yan
  • Jia-lin Sun


An Al-AlN core-shell structure is beneficial to the performance of Al-Al2O3 composites. In this paper, the phase evolution and microstructure of Al-Al2O3-TiO2 composites at high temperatures in flowing N2 were investigated after the Al-AlN core-shell structure was created at 853 K for 8 h. The results show that TiO2 can convert Al into Al3Ti (~1685 K), which reduces the content of metal Al and rearranges the structure of the composite. Under N2 conditions, Al3Ti is further transformed into a novelty non-oxide phase, TiCN. The transformation process can be expressed as follows: Al3Ti reacts with C and other carbides (Al4C3 and Al4O4C) to form TiCx (x < 1). As the firing temperature increases, Al3Ti transforms into a liquid phase and produces Ti(g) and TiO(g). Finally, Ti(g) and TiO(g) are nitrided and solid-dissolved into the TiCx crystals to form a TiCN solid solution.


aluminum titanium oxide alloys titanium carbonitride 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors acknowledge the financial support from the National Natural Science Foundation of China (No. 51872023).


  1. [1]
    E.M.M. Ewais, Carbon based refractories, J. Ceram. Soc. Jpn., 112(2004), No. 1310, p. 517.CrossRefGoogle Scholar
  2. [2]
    T.B. Zhu, Y.W. Li, S.B. Sang, and Z.P. Xie, Improved thermal shock resistance of magnesia-graphite refractories by the addition of MgO-C pellets, Mater. Des., 124(2017), p. 16.CrossRefGoogle Scholar
  3. [3]
    W. Yang, X.H. Wang, L.F. Zhang, Q.L. Shan, and X.F. Liu, Cleanliness of low carbon aluminum-killed steels during secondary refining processes, Steel Res. Int., 84(2013), No. 5, p. 473.CrossRefGoogle Scholar
  4. [4]
    C.H. Ma, Y. Li, M.W. Yan, Y. Sun, and J.L. Sun, Investigation on a postmortem resin-bonded Al-Si-Al2O3, sliding gate with functional gradient feature, Ceram. Int., 44(2018), No. 6, p. 6384.CrossRefGoogle Scholar
  5. [5]
    C. Atzenhofer, S. Gschiel, and H. Harmuth, Phase formation in Al2O3-C refractories with Al addition, J. Eur. Ceram. Soc., 37(2016), No. 4, p. 1805.CrossRefGoogle Scholar
  6. [6]
    P. Jiang, J.L. Sun, W.D. Xue, J.H. Chen, R.V. Kumar, and Y. Li, New synthetic route to Al4O4C reinforced Al-Al2O3 composite materials, Solid State Sci., 46(2015), p. 33.CrossRefGoogle Scholar
  7. [7]
    M.W. Yan, Y. Li, H.Y. Li, and J.L. Sun, Theoretical analysis and synthesis of Al4O4C and Al2CO phase in the resin bonded Al-Al2O3 refractory in N2-flowing, Ceram. Int., 44(2017), No. 2, p. 1493.CrossRefGoogle Scholar
  8. [8]
    S. Zhang and A. Yamaguchi, Hydration resistances and reactions with CO of Al4O4C and Al2OC formed in carbon-containing refractories with Al, J. Ceram. Soc. Jpn., 104(1996), No. 1209, p. 393.CrossRefGoogle Scholar
  9. [9]
    C.A. Qiu and R. Metselaar, Thermodynamic evaluation of the Al2O3-Al4C3 system and stability of Al-oxycarbides, Z. Metallkd., 86(1995), No. 3, p. 198.Google Scholar
  10. [10]
    E.L. Amma and G.A. Jeffrey, Structure of aluminum oxycarbide Al2OC: a short-range wurtzite super-structure, J. Chem. Phys., 34(1961), No. 1, p. 252.CrossRefGoogle Scholar
  11. [11]
    J.M. Lihrmann, J. Tirlocq, P. Descamps, and F. Cambier, Thermodynamics of the Al-C-O system and properties of SiC-AlN-Al2OC composites, J. Eur. Ceram. Soc., 19(1999), No. 16, p. 2781.CrossRefGoogle Scholar
  12. [12]
    J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system: I. Thermochemical functions of Al oxide, carbide and oxycarbides between 298 and 2100 K, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 633.CrossRefGoogle Scholar
  13. [13]
    J.M. Lihrmann, Thermodynamics of the Al2O3-Al4C3 system: II. Free energies of mixing, solid solubilities and activities, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 643.CrossRefGoogle Scholar
  14. [14]
    J.M. Lihrmanm, Thermodynamics of the Al2O3-Al4C3 system: III. Equilibrium vapour pressures and activation energies for volatilization, J. Eur. Ceram. Soc., 28(2008), No. 3, p. 649.CrossRefGoogle Scholar
  15. [15]
    J.M. Lihrmann, T. Zambetakis, and M. Daire, High-temperature behavior of the aluminum oxycarbide Al2OC in the system Al2O3-Al4C3 and with additions of aluminum nitride, J. Am. Ceram. Soc., 72(1989), No. 9, p. 1704.CrossRefGoogle Scholar
  16. [16]
    S.Y. Kuo and A.V. Virkar, Phase equilibria and phase transformation in the aluminum nitride-aluminum oxycarbide pseudobinary system, J. Am. Ceram. Soc., 72(1989), No. 4, p. 540.CrossRefGoogle Scholar
  17. [17]
    K. Motzfeldt, Comment on “Thermodynamics of the Al-C-O ternary system” [J. Electrochem. Soc. 153, E119 (2006)], J. Electrochem. Soc., 154(2007), No. 3, p. S1.CrossRefGoogle Scholar
  18. [18]
    K. Cheng, C. Yu, J. Ding, C.J. Deng, H.X. Zhu, and Z.L. Xue, Synthesis and characterization of AlN whiskers by nitridation of Al4O4C, J. Alloys Compd., 719(2017), p. 308.CrossRefGoogle Scholar
  19. [19]
    K. Cheng, C.J. Deng, J. Ding, C. Yu, and H.X. Zhu, Synthesis of Al2O3 nanowires by heat-treating Al4O4C in a carbon-containing environment, Ceram. Int., 44(2017), No. 5, p. 4996.CrossRefGoogle Scholar
  20. [20]
    Y.B. Li, Y. Bando, and D. Golberg, Single-crystalline α-Al2O3 nanotubes converted from Al4O4C nanowires, Adv. Mater., 17(2005), No. 11, p. 1401.CrossRefGoogle Scholar
  21. [21]
    H.G. Zhu, Y.L. Jiang, Y.Q. Yao, J.Z. Song, J.L. Li, and Z.H. Xie, Reaction pathways, activation energies and mechanical properties of hybrid composites synthesized in-situ from Al-TiO2-C powder mixtures, Mater. Chem. Phys., 137(2012), No. 2, p. 532.CrossRefGoogle Scholar
  22. [22]
    T.D. Xia, T.Z. Liu, W.J. Zhao, B.Y. Ma, and T.M. Wang, Self-propagating high-temperature synthesis of Al2O3-TiC-Al composites by aluminothermic reactions, J. Mater. Sci., 36(2001), No. 23, p. 5581.CrossRefGoogle Scholar
  23. [23]
    Y.M.Z. Ahmed, Z.I. Zaki, D.H.A. Besisa, A.M.M. Amin, and R.K. Bordia, Effect of zirconia and iron on the mechanical properties of Al2O3/TiC composites processed using combined self-propagating synthesis and direct consolidation technique, Mater. Sci. Eng. A, 696(2017), p. 182.CrossRefGoogle Scholar
  24. [24]
    A. Hajalilou, M. Hashim, M. Nahavandi, and I. Ismail, Mechanochemical carboaluminothermic reduction of rutile to produce TiC-Al2O3, nanocomposite, Adv. Powder Technol., 25(2014), No. 1, p. 423.CrossRefGoogle Scholar
  25. [25]
    R. Yamanoglu, N. Gulsoy, E.A. Olevsky, and H.O. Gulsoy, Production of porous Ti5Al2.5Fe alloy via pressureless spark plasma sintering, J. Alloys Compd., 680(2016), p. 654.CrossRefGoogle Scholar
  26. [26]
    A. Rajabi, M.J. Ghazali, and A.R. Daud, Chemical composition, microstructure and sintering temperature modifications on mechanical properties of TiC-based cermet-A review, Mater. Des., 67(2015), p. 95.CrossRefGoogle Scholar
  27. [27]
    M.W. Yan, Y. Li, J.J. Wang, H.Y. Li, Y. Sun, and C.H. Ma. Phase evolution mechanism of non-oxide bonded Al-Al2O3-MgO-ZrO2 composites at 1873K in flowing nitrogen, J. Am. Ceram. Soc., 101(2017), No. 5, p. 2162.CrossRefGoogle Scholar
  28. [28]
    U.R. Kattner, J.C. Lin, and Y.A. Chang, Thermodynamic assessment and calculation of the Ti-Al system, Metall. Trans. A, 23(1992), No. 8, p. 2081.CrossRefGoogle Scholar
  29. [29]
    M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno, On the kinetics of TiAl3 intermetallic layer formation in the titanium and aluminum diffusion couple, Intermetallics., 32(2013), p. 297.CrossRefGoogle Scholar
  30. [30]
    M. Sujata, S. Bhargava, and S. Sangal. On the formation of TiAl3 during reaction between solid Ti and liquid Al, J. Mater. Sci. Lett., 16(1997), No. 13, p. 1175.Google Scholar
  31. [31]
    M.Z. Mehrizi, R. Beygi, and G. Eisaabadi, Synthesis of Al/TiC-Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment, Ceram. Int., 42(2016), No. 7, p. 8895.CrossRefGoogle Scholar
  32. [32]
    M.W. Chase Jr, NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and the American Institute of Physics for the National Institute of Standards and Technology, Washington DC, 1998.Google Scholar
  33. [33]
    Y.F. Qin, G.F. Zheng, L.Y. Zhu, J.N. He, F.Y. Zhang, Y.C. Dong, and F.C. Yin, Structure and wear characteristics of TiCN nanocomposite coatings fabricated by reactive plasma spraying, Surf. Coat. Technol., 342(2018), p. 137.CrossRefGoogle Scholar
  34. [34]
    A. Kostov, B. Friedrich, and D. Zivkovic, Predicting thermodynamic properties in Ti-Al binary system by FactSage, Comput. Mater. Sci., 37(2006), No. 3, p. 355.CrossRefGoogle Scholar
  35. [35]
    N.J. Ashley, R.W. Grimes, and K.J. McClellan, Accommodation of non-stoichiometry in TiN1-x, and ZrN1-x, J. Mater. Sci., 42(2007), No. 6, p. 1884.CrossRefGoogle Scholar
  36. [36]
    Z. Dridi, B. Bouhafs, P. Ruterana, and H. Aourag, First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx, J. Phys. Condens. Matter, 14(2002), No. 43, p. 10237.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yang Sun
    • 1
  • Yong Li
    • 1
    Email author
  • Li-xin Zhang
    • 2
  • Shi-ming Li
    • 3
  • Ming-wei Yan
    • 1
  • Jia-lin Sun
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Sinosteel Refractory Co. Ltd.HenanChina
  3. 3.Beijing Cisri-nmt Environmental Science and Technology Co. Ltd.BeijingChina

Personalised recommendations