Advertisement

Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers

  • Xiao-zhou Zhang
  • Yan-ping Xia
  • Xing Liu
  • Yi-ming Zhong
  • Hai-bo Zhao
  • Pei-hong WangEmail author
Article
  • 15 Downloads

Abstract

This paper reports a piezoelectric nanogenerator (NG) with a thickness of approximately 80 μm for miniaturized self-powered acceleration sensors. To deposit the piezoelectric zinc oxide (ZnO) thin film, a magnetron sputtering machine was used. Polymethyl methacrylate (PMMA) and aluminum-doped zinc oxide (AZO) were used as the insulating layer and the top electrode of the NG, respectively. The experimental results show that the ZnO thin films annealed at 150°C exhibited the highest crystallinity among the prepared films and an optical band gap of 3.24 eV. The NG fabricated with an AZO/PMMA/ZnO/stainless steel configuration exhibited a higher output voltage than the device with an AZO/ZnO/PMMA/stainless steel configuration. In addition, the annealing temperature affected the open-circuit voltage of the NGs; the output voltage reached 3.81 V when the annealing temperature was 150°C. The open-circuit voltage of the prepared self-powered accelerometer increased linearly with acceleration. In addition, the small NG-based accelerometer, which exhibited excellent fatigue resistance, can be used for acceleration measurements of small and lightweight devices.

Keywords

piezoelectric ZnO thin film RF magnetron sputtering annealing temperature accelerometer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61671017), Key Project of Excellent Youth Talent Support Program in Colleges and Universities of Anhui Province (No. gxyqZD2018004), Provincial Natural Science Foundation of Anhui Higher Education Institution of China (No. KJ2016A787), and Anhui Provincial Natural Science Foundation of China (No. 1508085ME72).

References

  1. [1]
    Z.L. Wang and W.Z. Wu, Nanotechnology-enabled genergy harvesting for self-powered micro-nanosystems, Angew. Chem. Int. Ed., 51(2012), No. 41, p. 11700.CrossRefGoogle Scholar
  2. [2]
    N.S. Lewis, Toward cost-effective solar energy use, Science, 315(2007), No. 5813, p. 798.CrossRefGoogle Scholar
  3. [3]
    N. Sinha, S. Goel, A.J. Joseph, H. Yadav, K. Batra, M.K. Gupta, and B. Kumar, Y-doped ZnO nanosheets: gigantic piezoelectric response for an ultra sensitive flexible piezoelectric nanogenerator, Ceram. Int., 44(2018), No. 7, p. 8582.CrossRefGoogle Scholar
  4. [4]
    P.D. Mitcheson, E.M. Yeatman, G.K. Rao, A.S. Holmes, and T.C. Green, Energy harvesting from human and machine motion for wireless electronic devices, Proc. IEEE., 96(2008), No. 9, p. 1457.CrossRefGoogle Scholar
  5. [5]
    S. Saadon and O. Sidek, A review of vibration-based MEMS piezoelectric energy harvesters, Energy Convers. Manage., 52(2011), No. 1, p. 500.CrossRefGoogle Scholar
  6. [6]
    A. Harb, Energy harvesting: State of the art, Renewable Energy, 36(2011), No. 10, p. 2641.CrossRefGoogle Scholar
  7. [7]
    C.R. Bowen, H.A. Kim, P.M. Weaver, and S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications, Energy Environ. Sci., 7(2013), No. 1, p. 25.CrossRefGoogle Scholar
  8. [8]
    P.H. Wang and H. Du, ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance, Rev. Sci. Instrum., 86(2015), No. 7, p. 1131.Google Scholar
  9. [9]
    P.H. Wang, K. Tanaka, S. Sugiyama, X.H. Dai, X.L. Zhao, and J.Q. Liu, A micro electromagnetic low level vibration energy harvester based on M.M. technology, Microsyst. Technol., 15(2009), No. 6, p. 941.CrossRefGoogle Scholar
  10. [10]
    P.H. Wang, H.J. Du, S.N. Shen, M.S. Zhang, and B. Liu, Deposition, characterization and optimization of zinc oxide thin film for piezoelectric cantilevers, Appl. Surf. Sci., 258(2012), No. 24, p. 9510.CrossRefGoogle Scholar
  11. [11]
    P.H. Wang, H.J. Du, S.N. Shen, M.S. Zhang, and B. Liu, Preparation and characterization of ZnO microcantilever for nanoactuation, Nanoscale. Res. Lett., 7(2012), p. 1.CrossRefGoogle Scholar
  12. [12]
    P.H. Wang, L. Pan, J.Y. Wang, M.Y. Xu, G.Z. Dai, H.Y. Zou, K. Dong, and Z.L. Wang, An ultra-low-friction triboelectric-electromagnetic hybrid nanogenerator for rotation energy harvesting and self-powered wind speed sensor, ACS Nano, 12(2018) No. 9, p. 9433.CrossRefGoogle Scholar
  13. [13]
    P.H. Wang, R.Y. Liu, W.B. Ding, P. Zhang, L. Pan, G.Z. Dai, H.Y. Zou, K. Dong, C. Xu, and Z.L. Wang, Complementary electromagnetic-triboelectric active sensor for detecting multiple mechanical triggering, Adv. Funct. Mater., 28(2018), No. 11, art. No. 1705808.Google Scholar
  14. [14]
    S. Wang, L. Lin, and Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano Lett., 12(2012), No. 12, p. 6339.CrossRefGoogle Scholar
  15. [15]
    Z.L. Wang, Self-powered nanosensors and nanosystems, Adv. Mater., 24(2012), No. 2, p. 280.CrossRefGoogle Scholar
  16. [16]
    Y.P. Xia, P.H. Wang, S.W. Shi, G. He, M. Zhang, J.G. Lü, and Z.Q. Sun, Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 675.CrossRefGoogle Scholar
  17. [17]
    G. Chen, C. Song, and F. Pan, Magnetoresistive sensors with hybrid Co/insulator/ZnO: Co junctions, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 160.CrossRefGoogle Scholar
  18. [18]
    Z.S. Chen, B. Guo, Y.M. Yang, and C.C. Cheng, Metamaterials-based enhanced energy harvesting: a review, Physica B, 438(2014), p. 1.CrossRefGoogle Scholar
  19. [19]
    R. Gerhard-Multhaupt, G.M. Sessler, and J.E. West, Ultrasonic velocity and absorption in thin polymer films, [in] Conference Proceedings of Ultrasonics International, 1985, p. 317.Google Scholar
  20. [20]
    A. Toprak and O. Tigli, Piezoelectric energy harvesting: state-of-the-art and challenges, Appl. Phys. Rev., 1(2014), No. 3, p. 5880.CrossRefGoogle Scholar
  21. [21]
    R. Ahmed, F. Mir, and S. Banerjee, A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity, Smart Mater. Struct., 26(2017), No. 8, art. No. 085031.Google Scholar
  22. [22]
    B. Kumar and S.W. Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures, Nano Energy, 1(2012), No. 3, p. 342.CrossRefGoogle Scholar
  23. [23]
    J.X. Zhao, J. Yang, Z.W. Lin, N. Zhao, J. Liu, Y.M. Wen, and P. Li, An arc-shaped piezoelectric generator for multi-directional wind energy harvesting, Sensors Actuat. A, 236(2015), p. 173.CrossRefGoogle Scholar
  24. [24]
    D.W. Kang, J.S. Choi, J.W. Lee, and G.R. Tack, Prediction of energy consumption according to physical activity intensity in daily life using accelerometer, Int. J. Precis. Eng. Manuf., 13(2012), No. 4, p. 617.CrossRefGoogle Scholar
  25. [25]
    S.R. Chung, T.H. Yang, H.C. Shin, et al., Initial total bilirubin and clinical outcome in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with drug-eluting stents, Circ. J., 80(2016), No. 6, p. 1437.CrossRefGoogle Scholar
  26. [26]
    M.S. Vijaya, Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences, CRC Press, USA, 2013.Google Scholar
  27. [27]
    C.W. de Silva, Sensors and Actuators: Control Systems Instrumentation, CRC Press, USA, 2007, p. 696.CrossRefGoogle Scholar
  28. [28]
    S. Joshi, M.M. Nayak, and K. Rajanna, Effect of post-deposition annealing on transverse piezoelectric coefficient and vibration sensing performance of ZnO thin films, Appl. Surf. Sci., 296(2014), p. 169.CrossRefGoogle Scholar
  29. [29]
    R. Ondo-Ndong, G. Ferblantier, M.A. Kalfioui, A. Foucaran, and A. Boyer, Properties of RF magnetron sputtered zinc oxide thin films, J. Cryst. Growth, 255(2003), No. 1–2, p. 130.CrossRefGoogle Scholar
  30. [30]
    A.A.M. Ralib, A.N. Nordin, H. Salleh, and R. Othman, Fabrication of aluminium doped zinc oxide piezoelectric thin film on a silicon substrate for piezoelectric MEMS energy harvesters, Microsyst. Technol., 18(2012), No. 11, p. 1761.CrossRefGoogle Scholar
  31. [31]
    M.S. Wang, E.J. Kim, J.S. Chung, E.W. Shin, S.H. Hahn, and K.E. Lee, Influence of annealing temperature on the structural and optical properties of sol-gel prepared ZnO thin films, Phys. Status Solidi A, 203(2006), No. 10, p. 2418.CrossRefGoogle Scholar
  32. [32]
    A.K. Zak, M.E. Abrishami, W. H.A. Majid, R. Yousefi, and S.M. Hosseini, Effects of annealing temperature on some structural and optical properties of ZnO nanoparticles prepared by a modified sol–gel combustion method, Ceram. Int., 37(2011), No. 1, p. 393.CrossRefGoogle Scholar
  33. [33]
    W.Z. Wu and Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics, Nat. Rev. Mater., 1(2016), art. No. 16031.Google Scholar
  34. [34]
    Z.N. Wang, R.M. Yu, C.F. Pan, Z.L. Li, J. Yang, F. Yi, and Z.L. Wang, Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing, Nat. Commun., 6(2015), p. 8401.CrossRefGoogle Scholar
  35. [35]
    Z. Wang, R. Yu, X. Wang, W. Wu, and Z.L. Wang, Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect, Adv. Mater., 28(2016), No. 32, p. 6880.CrossRefGoogle Scholar
  36. [36]
    M. Louhichi, Z.B. Hamed, S. Romdhane, D.A.M. Egbecd, and H. Bouchrihaa, The effect of the Al concentration on efficiency of the hybrid AnE-PVstat:Al-doped ZnO nanocrystal solar cells, Opt. Mater., 73(2017), p. 473.CrossRefGoogle Scholar
  37. [37]
    S. Lee, J. Hong, C. Xu, M. Lee, D. Kim, L. Lin, W. Hwang, and Z.L. Wang, Toward robust nanogenerators using aluminum substrate, Adv. Mater., 24(2012), No. 32, p. 4398.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiao-zhou Zhang
    • 1
  • Yan-ping Xia
    • 1
  • Xing Liu
    • 1
  • Yi-ming Zhong
    • 1
  • Hai-bo Zhao
    • 1
  • Pei-hong Wang
    • 1
    Email author
  1. 1.School of Physics & Materials ScienceAnhui UniversityHefeiChina

Personalised recommendations