Advertisement

Review on nanocomposites fabricated by mechanical alloying

  • Mohammed A. Taha
  • Rasha A. Youness
  • M.F. ZawrahEmail author
Review
  • 16 Downloads

Abstract

Composites are composed of multiphase materials, where each phase has specific properties that differ from those of the other phases which can effect on the whole properties of composite. Nanocomposites are class of materials that contain at least one phase in the nanometric size range and can be produced by any suitable technique for preparing nanomaterials. Composites are an interesting class of materials that have recently been used in numerous applications, including structural, biomedical, electronics, and environmental applications. In composites, reinforcements might be fibers, particulates, or whiskers. Mechanical alloying (MA) is a promising technique for producing nanocomposite materials that are difficult or impossible to prepare via conventional techniques. In this review, we provide an overview of nanocomposites prepared by the MA process. The mechanism of milling and other milling parameters are overviewed, and insights into sintering categories and parameters are also presented.

Keywords

nanocomposites mechanical alloying fabrication sintering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Iftekhar, Standard Handbook of Biomedical Engineering and Design, Chapter 12: Biomedical Composites, McGraw-Hill Companies, New York, 2004, p. 109.Google Scholar
  2. [2]
    W.D. Callister and D.G. Rethwisch, Materials Science and Engineering: An Introduction, Wiley, New York, 2003, p. 197.Google Scholar
  3. [3]
    F.L. Matthews and R.D. Rawlings, Composite Materials: Engineering and Science, Woodhead Publishing, 1999, p. 72.Google Scholar
  4. [4]
    E.T. Thostenson, C. Li, and T.W. Chou, Nanocomposites in context, Compos. Sci. Technol., 65 (2005), No. 3–4, p. 491.CrossRefGoogle Scholar
  5. [5]
    K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, and D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(e-caprolactone) nanocomposites, Compos. Sci. Technol., 67(2007), No. 10, p. 2165.CrossRefGoogle Scholar
  6. [6]
    P.R. Supronowicz, P.M. Ajayan, K.R. Ullmann, B.P. Aru-lanandam, D.W. Metzger, and R. Bizios, Novel current-conducting composite substrates for exposing osteoclasts to alternating current stimulation, J. Biomed. Mater. Res., 59(2002), No. 3, p. 499.CrossRefGoogle Scholar
  7. [7]
    C. Stephan, T.P. Nguyen, M.L. De La Chapelle, S. Lefrant, C. Journet, and P. Bernier, Characterization of single walled carbon nanotubes-PMMA composites, Synth. Met., 108(2000), No. 2 p. 139.CrossRefGoogle Scholar
  8. [8]
    R.A. Youness, M.A. Taha, and M.A. Ibrahim, Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites, J. Mol. Struct., 1150(2017), p. 188.CrossRefGoogle Scholar
  9. [9]
    K. Niespodziana, K. Jurczyk, J. Jakubowicz, and M. Jurczyk, Fabrication and properties of titanium-hydroxyapatite nanocomposites, Mater. Chem. Phys., 123(2010), No. 1, p. 160.CrossRefGoogle Scholar
  10. [10]
    J.G. Miranda-Hernández, S. Moreno-Guerrero, A.B. Soto-Guzmán, and E. Rocha-Rangel, Production and characterization of Al2O3-Cu composite materials, J. Ceram. Process. Res., 7(2006), No. 4, p. 311.Google Scholar
  11. [11]
    C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites, Prog. Mater. Sci., 58(2013), No. 4, p. 383.CrossRefGoogle Scholar
  12. [12]
    A.W. Weeber, H. Bakker, and F.R. de Boer, The preparation of amorphous Ni-Zr powder by grinding the crystalline alloy, EPL, 2(1986), No. 6, p. 445.CrossRefGoogle Scholar
  13. [13]
    G. Jangg, F. Kuttner, and G. Korb, Preparation and properties of dispersion hardened aluminum, Aluminum, 51(1975), p. 641.Google Scholar
  14. [14]
    E. Arzt and L. Schultz, New materials by mechanical alloying techniques, Mater. Manuf. Process., 6(1991), No.4, p. 733.CrossRefGoogle Scholar
  15. [15]
    C. Suryanarayana, Mechanical Alloying and Milling, New York, Marcel Dekker, 2004.CrossRefGoogle Scholar
  16. [16]
    C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46 (2001), No.1–2, p. 1.CrossRefGoogle Scholar
  17. [17]
    M.J. Luton, C.S. Jayanth, M.M. Disko, S. Matras, and J. Vallone, Cryomilling of Nano-phase Dispersion Strengthened Aluminum, [in] L.E. McCandlsih, D.E. Polk, R.W. Siegel, and B.H. Kear, eds., Multicomponent Ultrafine Microstructures, Vol. 132, Pittsburgh (PA), Mater. Res Soc., 1988, p. 132.Google Scholar
  18. [18]
    G. Heinicke, Tribochemistry, Munchen, Hanser Publishers, 1984, p. 119.Google Scholar
  19. [19]
    R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Molecular modeling, FTIR spectral characterization and mechanical properties of carbonated-hydroxyapatite prepared by mechanochemical synthesis, Mater. Chem. Phys., 190(2017), p. 209.CrossRefGoogle Scholar
  20. [20]
    R.A. Youness, M.A. Taha, H. Elhaes, and M. Ibrahim, Preparation, fourier transform infrared characterization and mechanical properties of hydroxyapatite nanopowders, J. Comput. Theor. Nanosci., 14(2017), No. 5, p. 2409.CrossRefGoogle Scholar
  21. [21]
    J.S. Benjamin, Mechanical alloying, Sci. Am., 234(1976), No. 5, p. 40.CrossRefGoogle Scholar
  22. [22]
    J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.CrossRefGoogle Scholar
  23. [23]
    P.S. Gilman and J.S. Benjamin, Mechanical alloying, Annu. Rev. Mater. Sci., 13(1983), No. 1, p. 279.CrossRefGoogle Scholar
  24. [24]
    M.F. Zawrah and L. Shaw, Microstructure and hardness of nanostructured Al-Fe-Cr-Ti alloys through mechanical alloying, Mater. Sci. Eng. A, 355(2003), No. 1–2, p. 37.CrossRefGoogle Scholar
  25. [25]
    L. Shaw, J. Villegas, H. Luo, M.F. Zawrah, and D. Miracle, Effect of process controlling agents on mechanical alloying of nanostructured aluminum alloys, Metall. Mater. Trans. A, 34(2003), No.1, p. 159.CrossRefGoogle Scholar
  26. [26]
    J.S. Benjamin and T.E. Volin, The mechanism of mechanical alloying, Metall. Trans., 5(1974), No. 8, p. 1929.CrossRefGoogle Scholar
  27. [27]
    M.F. Zawrah, H. Abdel-kader, and N.E. Elbaly, Fabrication of Al2O3-20 vol.% Al nanocomposite powders using high energy milling and their sinterability, Mater. Res. Bull., 47(2012), No. 3, p. 655.CrossRefGoogle Scholar
  28. [28]
    J.B. Fogagnolo, F. Velasco, M.H. Robert, and J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders, Mater. Sci. Eng. A, 342(2003), No. 1–2, p. 131.CrossRefGoogle Scholar
  29. [29]
    R.R. Enrique, A.R.Z. José, E.V. Sergio, C.S. Brianda, E.G. Ivanovich, and M.S. Roberto, Effect of particle size and titanium content on the fracture toughness of particle-ceramic composites, Mater. Today: Proceedings, 3(2016), No. 2, p. 249.Google Scholar
  30. [30]
    M.F. Zawrah, A.A. El Kheshen, and A.A. El-Magraby, Effect of SiC-graphite-Al-metal addition on low- and ultra-low cement bauxite castables, Ceram. Int., 38(2012), No. 5, p. 3857.CrossRefGoogle Scholar
  31. [31]
    S. Sampath, H. Herman, N. Shimoda, and T. Saito, Thermal spray processing of FGMs, MRS Bull., 20(1995), No. 1, p. 27.CrossRefGoogle Scholar
  32. [32]
    R.M. Davis, B. McDermott, and C.C. Koch, Mechanical alloying of brittle materials, Metall. Trans. A, 19(1988), No. 12, p. 2867.CrossRefGoogle Scholar
  33. [33]
    S. Shrivastava, N. Jadon, and R. Jain, Next-generation polymer nanocomposite-based electrochemical sensors and biosensors: A review, Trends Anal. Chem., 82(2016), p. 55.CrossRefGoogle Scholar
  34. [34]
    I. Armentano, M. Dottori, E. Fortunati, S. Mattioli, and J.M. Kenny, Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polym. Degrad. Stab., 95(2010), No. 11, p. 2126.CrossRefGoogle Scholar
  35. [35]
    K. Rezwan, Q.Z. Chen, J.J. Blaker, and A.R. Boccaccini, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, 27(2006), No. 18, p. 3413.CrossRefGoogle Scholar
  36. [36]
    L.S. Nair and C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci., 32(2007), No. 8–9, p. 762.CrossRefGoogle Scholar
  37. [37]
    M. Dziadek, E. Stodolak-Zych, and K. Cholewa-Kowalska, Biodegradable ceramic-polymer composites for biomedical applications: A review, Mater. Sci. Eng. C, 71(2017), p. 1175.CrossRefGoogle Scholar
  38. [38]
    M.A. Taha and M.F. Zawrah, Effect of nano ZrO2 on strengthening and electrical properties of Cu-Matrix nano-composits prepared by mechanical alloying, Ceram. Int., 43(2017), No. 15, p. 12698.CrossRefGoogle Scholar
  39. [39]
    M.A. Taha and M.F. Zawrah, Mechanical alloying and sintering of Ni/10wt% Al2O3 nanocomposites and its characterization, Silicon, 10(2018), No. 4, p. 1351.CrossRefGoogle Scholar
  40. [40]
    M.F. Zawrah, M.A. Taha, F. Saadallah, A.G. Mostafa, M.Y. Hassan, and M. Nasr, Effect of nano ZrO2 on the properties of Al-Al2O3 nanocomposites prepared by mechanical alloying, Silicon, 10(2018), No. 4, p. 1523.CrossRefGoogle Scholar
  41. [41]
    M.F. Zawrah, M.A. Taha, and H.A. Mostafa, In-situ formation of Al2O3/Al core-shell from waste material: production of porous composite improved by graphene, Ceram. Int., 44(2018), No. 9, p. 10693.CrossRefGoogle Scholar
  42. [42]
    E.M. Hamzawy, A.A. El-Kheshen, and M.F. Zawrah, Densification and properties of glass/cordierite composites, Ce-ram. Int., 31(2005), No. 3, p. 383.CrossRefGoogle Scholar
  43. [43]
    M.F. Zawrah and E.M.A. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass-alumina composites, Ceram. Int., 28(2002), No. 2, p. 123.CrossRefGoogle Scholar
  44. [44]
    A.A. El-Kheshen and M.F. Zawrah, Sinterability, microstructure and properties of glass/ceramics composites, Ceram. Int., 29(2003), No. 3, p. 251.CrossRefGoogle Scholar
  45. [45]
    M.M.S. Wahsh, R.M. Khattab, and M.F. Zawrah, Sintering and technological properties of alumina/zirconia/nano TiO2 ceramic composites, Mater. Res. Bull., 48(2013), No. 4, p. 1411.CrossRefGoogle Scholar
  46. [46]
    M.F. Zawrah, R.M. Khattab, E.M Saad, and R.A. Gado, Effect of surfactant types and their concentration on the structural characteristics of nanoclay, Spectrochim. Acta Part A, 122(2014), p. 616.CrossRefGoogle Scholar
  47. [47]
    R.M. Khattab, H.A. Dadr, and M.F. Zawrah, Effect of processing techniques on properties of porous TiO2 and TiO2/hydroxyapatite composites, Ceram. Int., 44(2018) No. 7, p. 8643.CrossRefGoogle Scholar
  48. [48]
    R.M. Khattab, A.M. El-Rafei, and M.F. Zawrah, In-situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume, Mater. Res. Bull., 47(2012), No. 9, p. 2662.CrossRefGoogle Scholar
  49. [49]
    M.F. Zawrah, Effect of Cr2O3 on the properties of spinel/mullite composites, Brit. Ceram. Trans., 102(2003), No. 3, p. 114.CrossRefGoogle Scholar
  50. [50]
    M.F. Zawrah and N.M. Khalil, Processing, sintering and properties of CaZrO3/MgO and ZrO2/MgO composites, InterCeram, 57(2008), No. 2, p. S/1.Google Scholar
  51. [51]
    M. Awaad, M.F. Zawrah, and N.M. Khalil, In situ formation of zirconia-alumina-spinel-mullite ceramic composites, Ceram. Int., 34(2008), No. 2, p. 429.CrossRefGoogle Scholar
  52. [52]
    A.A. El-kheshen, M.F. Zawrah, and M. Awaad, Densification, phase composition and properties of borosilicate glass composites containing nano-alumina and titania, J. Mater. Sci.: Mater. Electron., 20(2009), No. 7, p. 637.Google Scholar
  53. [53]
    A. Ficai, E. Andronescu, G. Voicu, C. Ghitulica, B.S. Vasile, D. Ficai, and V. Trandafir, Self assembled collagen/hydroxyapatite composite materials, Chem. Eng. J., 160(2010), No. 2, p. 794.CrossRefGoogle Scholar
  54. [54]
    L. Zhang, P. Tang, M. Xu, W. Zhang, W. Chai, and Y. Wang, Effects of crystalline phase on the biological properties of collagen-hydroxyapatite composites, Acta Biomater., 6(2010), No. 6, p. 2189.CrossRefGoogle Scholar
  55. [55]
    J. Yin and B.L. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci., 479(2015), p. 256.CrossRefGoogle Scholar
  56. [56]
    X.C. Wang, J. Chang, and C.T. Wu, Bioactive inorganic/organic nanocomposites for wound healing, Appl. Mater. Today, 11(2018), p. 308.CrossRefGoogle Scholar
  57. [57]
    A. Smirnov and J.F. Bartolomé, Microstructure and mechanical properties of ZrO2 ceramics toughened by 5-20vol% Ta metallic particles fabricated by pressureless sintering, Ceram. Int., 40(2014), No. 1, p. 1829.CrossRefGoogle Scholar
  58. [58]
    A. Zima, Hydroxyapatite-chitosan based bioactive hybrid biomaterials with improved mechanical strength, Spectrochim. Acta, 193(2018), p. 175.CrossRefGoogle Scholar
  59. [59]
    A.G. Basutkar and A. Kolekar, A review on properties and applications of ceramic matrix composites, IJRSI, II(2015), No. XII p. 28.Google Scholar
  60. [60]
    J. Silvestre, N. Silvestre, and J. de Brito, An overview on the improvement of mechanical properties of ceramics nanocomposites, J. Nanomater., 2015(2015), p. 3.CrossRefGoogle Scholar
  61. [61]
    C. Pecharromán, J.I. Beltrán, F. Esteban-Betegón, S. López-Esteban, J.F. Bartolomé, M.C. Muňoz, and J.S. Moya, Zirconia/nickel interfaces in micro- and nanocomposites, Z. Metallkd., 96(2005), No. 5, p. 507.CrossRefGoogle Scholar
  62. [62]
    J.S. Moya, S. López-Esteban, C. Pecharromán, J.F. Bartolomé, and R. Torrecillas, Mechanically stable monoclinic zirconia-nickel composite, J. Am. Ceram. Soc., 85(2002), No. 8, p. 2119.CrossRefGoogle Scholar
  63. [63]
    Y.G. Jung, S. Choi, C.S. Oh, and U.G. Paik, Residual stress and thermal properties of zirconia/metal (nickel and stainless steel 304) functionally graded materials fabricated by hot pressing, J. Mater. Sci., 32(1997), No.14, p. 3841.CrossRefGoogle Scholar
  64. [64]
    M.F. Zawrah, Synthesis and characterization of WC-Co nanocomposites by novel chemical method, Ceram. Int., 33(2007), No. 2, p. 155.CrossRefGoogle Scholar
  65. [65]
    M.F. Zawrah, M.A. Zayed, and M.R.K. Ali, Synthesis and characterization of SiC and SiC/Si3N4 composite nano powders from waste material, J. Hazard. Mater., 227–228(2012), p. 250.CrossRefGoogle Scholar
  66. [66]
    J. Suri, L.L. Shaw, and M.F. Zawrah, Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume, Int. J. Appl. Ceram. Technol., 9(2011), No. 2, p. 291.CrossRefGoogle Scholar
  67. [67]
    J. Suri, L.L Shaw, and M.F. Zawrah, Synthesis of carbon-free Si3N4/SiC nanopowders using silica fume, Ceram. Int., 37(2011), No. 8, p. 3477.CrossRefGoogle Scholar
  68. [68]
    M.F. Zawrah, R.M. Khattab, A.A. El-Kheshen, and E. El Fadaly, Sintering and properties of borosilicate glass/Li-Na-K-feldspar composites for electronic applications, Ceram. Int., 43(2017), No. 17, p. 15068.CrossRefGoogle Scholar
  69. [69]
    M.F.M. Zawrah and A.A. El-Kheshen, Characterization of borosilicate glass matrix composites reinforced with SiC or ZrO2, Brit. Ceram. Trans., 103(2004), No. 4, p. 165.CrossRefGoogle Scholar
  70. [70]
    M.F. Zawrah and M.H. Aly, In-situ formation of Al2O3-SiC-mullite from Al matrix composites, Ceram. Int., 32(2006), No. 1, p. 21.CrossRefGoogle Scholar
  71. [71]
    Y. Yamada, A. Kawasaki, M. Taya, and R. Watanabe, Effect of debonding at the phase interface on Young's modulus in sintered PSZ/stainless steel composites, Mater. Trans., JIM, 35(1994), No. 11, p. 814.CrossRefGoogle Scholar
  72. [72]
    M. Nawa, K. Yamazaki, T. Sekino, and K. Niihara, Micro-structure and mechanical properties of 3Y-TZP/Mo nano-composites-processing a novel interpenetrated intragranular microstructure, J. Mater. Sci., 31(1996), No. 11, p. 2849.CrossRefGoogle Scholar
  73. [73]
    S. López-Esteban, J.F. Bartolomé, C. Pecharromán, and J.S. Moya, Zirconia/stainless-steel continuous functionally graded material, J. Eur. Ceram. Soc., 22(2002), No. 16, p. 2799.CrossRefGoogle Scholar
  74. [74]
    S. López-Esteban, J.F. Bartolomé, J.S. Moya, and T. Tanimoto, Mechanical performance of 3Y-TZP/Ni composites: tensile, bending, and uniaxial fatigue tests, J. Mater. Res., 17(2002), No. 7, p. 1592.CrossRefGoogle Scholar
  75. [75]
    M.A. Taha, G.M. Elkomy, H. Abo Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5 wt.% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.CrossRefGoogle Scholar
  76. [76]
    M.A. Taha, A.H. Nassar, and M.F. Zawrah, Improvement of wettability, sinterability, mechanical and electrical properties of Al2O3-Ni nanocomposites prepared by mechanical alloying, Ceram. Int., 43(2017), No. 4, p. 3576.CrossRefGoogle Scholar
  77. [77]
    M.F. Zawrah, R.A. Essawy, H.A. Zayed, A.H.A. Fattah, and M.A. Taha, Mechanical alloying, sintering and characterization of Al2O3-20wt%-Cu nanocomposite, Ceram. Int., 40(2014), No. 1, p. 31.CrossRefGoogle Scholar
  78. [78]
    K. Honjo, Fracture toughness of PAN-based carbon fibres estimated from strength-mirror size relation, Carbon, 41(2003), No. 5, p. 979.CrossRefGoogle Scholar
  79. [79]
    Y.C. Yang, C. Ramirez, X. Wang, Z.X. Guo, A. Tokranov, R.Q. Zhou, I. Szlufarska, J. Lou, and B.W. Sheldon, Impact on carbon nanotube defects on fracture mechanisms in ceramic nanocomposites, Carbon, 115(2017), p. 402.CrossRefGoogle Scholar
  80. [80]
    N Koichi, New design concept of structural ceramics/ceramic nanocomposites, J. Ceram. Soc. Jpn., 99(1991), p. 974.CrossRefGoogle Scholar
  81. [81]
    Y.K. Jeong and K. Niihara, Microstructure and properties of alumina-silicon carbide nanocomposites fabricated by pressureless sintering and post hot-isostatic pressing, Trans. Nonferrous Met. Soc., 21(2011), p. 1.CrossRefGoogle Scholar
  82. [82]
    M. Yoshimura, T. Ohji, M. Sando, Y.H. Choa, T. Sekino, and K. Niihara, Oxidation-induced strengthening and toughening behavior in micro-and nano-composites of Y2O3/SiC system, Mater. Lett., 35(1998), No. 3–4, p. 139.CrossRefGoogle Scholar
  83. [83]
    J.F. Yang, T. Ohii, T. Sekino, C.L. Li, and K. Niihara, Phase transformation, microstructure and mechanical properties of Si3N4/SiC composite, J. Eur. Ceram. Soc., 21(2001), No. 12, p. 2179.CrossRefGoogle Scholar
  84. [84]
    P. Palmero, Structural ceramic nanocomposites: A review of properties and powders' synthesis methods, Nanomaterials, 5(2015), No. 2, p. 656.CrossRefGoogle Scholar
  85. [85]
    J. Venkatesan and S.K. Kim, Nano-hydroxyapatite composite biomaterials for bone tissue engineering— a review, J. Biomed. Nanotechnol., 10(2014), No. 10, p. 3124.CrossRefGoogle Scholar
  86. [86]
    H.S. Mansur and H.S. Costa, Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications, Chem. Eng. J., 137(2008), No. 1, p. 72.CrossRefGoogle Scholar
  87. [87]
    J.L. Liu and X.G. Miao, Sol-gel derived bioglass as a coating material for porous alumina scaffolds, Ceram. Int., 30(2004), No. 7, p. 1781.CrossRefGoogle Scholar
  88. [88]
    M. Haghshenas, Mechanical characteristics of biodegradable magnesium matrix composites: A review, J. Magnesium Alloys, 5(2017), No. 2, p. 189.CrossRefGoogle Scholar
  89. [89]
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Biodegradable materials and metallic implants-a review, J. Funct. Biomater., 8(2017), No. 4, p. 44.CrossRefGoogle Scholar
  90. [90]
    Y.F. Zheng, X.N. Gu, and F. Witte, Biodegradable metals, Mater. Sci. Eng. R, 77(2014), p. 1.CrossRefGoogle Scholar
  91. [91]
    A. Chandrasekar, S. Sagadevan, and A. Dakshnamoorthy, Synthesis and characterization of nano-hydroxyapatite (n-HAP) using the wet chemical technique, Int. J. Phys. Sci., 8(2013), No. 32, p. 1639.Google Scholar
  92. [92]
    E.M.A. Khalil, R.A. Youness, M.S. Amer, and M.A. Taha, Mechanical properties, in vitro and in vivo bioactivity assessment of Na2O-CaO-P2O5-B2O3-SiO2 glass-ceramics, Ceram. Int., 44(2018), No. 7, p. 7867.CrossRefGoogle Scholar
  93. [93]
    R.A. Youness, M.A. Taha, M. Ibrahim, and A. El-Kheshen, FTIR spectral characterization, mechanical properties and antimicrobial properties of La-doped phosphate-based bioactive glasses, Silicon, 10(2018), No. 3, p. 1151.CrossRefGoogle Scholar
  94. [94]
    R.A. Youness, M.A. Taha, A.A. El-Kheshen, and M. Ibrahim, Influence of the addition of carbonated hydroxyapatite and selenium dioxide on mechanical properties and in vitro bioactivity of borosilicate inert glass, Ceram. Int., 44(2018), No. 7, p. 20677.CrossRefGoogle Scholar
  95. [95]
    S.M. Abo-Naf, E.S.M. Khalil, E.S.M. El-Sayed, H. Zayed, and R.A. Youness, In vitro bioactivity evaluation, mechanical properties and microstructural characterization of Na2O-CaO-B2O3-P2O5 glasses, Spectrochim. Acta A, 144(2015), p. 88.CrossRefGoogle Scholar
  96. [96]
    R.A. Youness, M.A. Taha, and M. Ibrahim, In vitro bioactivity, physical and mechanical properties of carbonated-fluoroapatite during mechanochemical synthesis, Ceram. Int., 44(2018), No. 17, p. 21323.CrossRefGoogle Scholar
  97. [97]
    P.N. Jagadale, S.R. Kulal, M.G. Joshi, P.P. Jagtap, S.M. Khetre, and S.R. Bamane, Synthesis and characterization of nanostructured CaSiO3 biomaterial, Mater. Sci.-Poland, 31(2013), No. 2, p. 269.CrossRefGoogle Scholar
  98. [98]
    H. Oonishi, L.L. Hench, J. Wilson, F. Suqihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamoto, and S. Mizokawa, Quantitative comparison of bone growth of bone growth behavior in granules of bioglass, A-W glass-ceramics, and hydroxyapatite, J. Biomed. Mater. Res., 51(2000), No. 1, p. 37.CrossRefGoogle Scholar
  99. [99]
    A. Refaat, R.A. Youness, M.A. Taha, and M. Ibrahim, Effect of zinc oxide on the electronic properties of carbonated hydroxyapatite, J. Mol. Struct., 1147(2017), p. 148.CrossRefGoogle Scholar
  100. [100]
    V.P. Orlovskii, V.S. Komlev, and S.M. Barinov, Hydroxyapatite and hydroxyapatite-based ceramics, Inorg. Mater., 38(2002), No. 10, p. 973.CrossRefGoogle Scholar
  101. [101]
    R. Langer and J.P. Vacanti, Tissue engineering, Science, 260(1993), No. 5110, p. 920.CrossRefGoogle Scholar
  102. [102]
    E.M. Christenson, K.S. Anseth, J.J.P. van den Beucken Jeroen, C.K. Chan, B. Ercan, and J.A. Jansen, Nanobiomaterial applications in orthopaedics, J. Orthop. Res., 25(2007), No. 1, p. 11.CrossRefGoogle Scholar
  103. [103]
    S.V. Dorozhkin, Biocomposites and hybrid biomaterials based on calcium orthophosphates, Biomatter, 1(2011), No. 1, p. 3.CrossRefGoogle Scholar
  104. [104]
    V.S. Komlev, S.M. Barinov, V.P. Orlovskii, and S.G. Kurdyumov, Porous ceramic granules of hydroxyapatite, Refract. Ind. Ceram., 42(2001), No. 5–6, p. 195.CrossRefGoogle Scholar
  105. [105]
    J.O. Akindoyo, M.D.H. Beg, S. Ghazali, and H.P. Heim, Impact modified PLA-hydroxyapatite compo-sites-thermo-mechanical properties, Composites Part A, 107(2018), p. 326.CrossRefGoogle Scholar
  106. [106]
    M. Gong, Q. Zhao, L.M. Dai, Y.Y. Li, and T.S. Jiang, Fabrication of polylactic acid/hydroxyapatite/graphene oxide composite and their thermal stability, hydrophobic and mechanical properties, J. Asian Ceram. Soc., 5(2017), No. 2, p. 160.CrossRefGoogle Scholar
  107. [107]
    K. Maca, M. Trunec, and R. Chmelik, Processing and properties of fine-grained transparent MgAl2O4 ceramics, Ceram. Silik., 51(2017), No. 2, p. 94.Google Scholar
  108. [108]
    A. Vladescu, S.C. Padmanabhan, F. Ak Azem, M. Braic, I. Titorencu, I. Birlik, M.A. Morris, and V. Braic, Mechanical properties and biocompatibility of the sputtered Ti doped hydroxyapatite, J. Mech. Behav. Biomed. Mater., 63(2016), p. 314.CrossRefGoogle Scholar
  109. [109]
    F. Heidari, M. Razavi, M.E. Bahrololoom, R. Bazargan-Lari, D. Vashaee, H. Kotturi, and L. Tayebi, Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications, Mater. Sci. Eng. C, 65(2016), p. 338.CrossRefGoogle Scholar
  110. [110]
    A. Vladescu, I. Birlik, V. Baric, M. Toparli, E. Celik, and F. Ak Azem, Enhancement of the mechanical properties of hydroxyapatite by SiC addition, J. Mech. Behav. Biomed. Mater., 40(2014), p. 362.CrossRefGoogle Scholar
  111. [111]
    R.K. Roeder, G.L. Converse, R.J. Kane, and W. Yue, Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes, JOM, 60(2008), No. 3, p. 38.CrossRefGoogle Scholar
  112. [112]
    G.S. Upadhyaya, Powder Metallurgy Technology, Cambridge International Science Publishing, UK, 2002.Google Scholar
  113. [113]
    M.J. Donachie and M.F. Burr, Effects of pressing on metal powders, JOM, 15(1963), No. 11, p. 849.CrossRefGoogle Scholar
  114. [114]
    S.Y. Gómes and D. Hotza, Predicting powder densification during sintering, J. Eur. Ceram. Soc., 38(2018), No. 4, p. 1736.CrossRefGoogle Scholar
  115. [115]
    T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.CrossRefGoogle Scholar
  116. [116]
    G.L. Messing and A.J. Stevenson, Materials science: toward pore-free ceramics, Science, 322(2008), p. 383.CrossRefGoogle Scholar
  117. [117]
    C.T. Campbell, S.C. Parker, and D.E. Starr, The effect of size-dependent nanoparticle energetics on catalyst sintering, Science, 298(2002), No. 5594, p. 811.CrossRefGoogle Scholar
  118. [118]
    C. Herring, Effect of change of scale on sintering phenomena, J. Appl. Phys., 21(1950), No. 4, p. 301.CrossRefGoogle Scholar
  119. [119]
    J. Pan, Modeling sintering at different length scales, Int. Mater. Rev., 48(2003), No. 2, p. 69.CrossRefGoogle Scholar
  120. [120]
    T.S. Yeh and M.D. Scaks, Low-temperature sintering of aluminum oxide, J. Am. Ceram. Soc., 71(1988), No. 10, p. 841.CrossRefGoogle Scholar
  121. [121]
    E.A. Barringer and H.K. Bowman, Formation, packing, and sintering of mono-dispersed TiO2 powders, J. Am. Ceram. Soc., 65(1982), No. 12, p. 199.CrossRefGoogle Scholar
  122. [122]
    X. Kuang, G. Carotenuto, and L. Nicolais, A review of ceramic sintering and suggestions on reducing sintering temperatures, Adv. Perform. Mater., 4(1997), No. 3, p, 257.Google Scholar
  123. [123]
    Z. He and J. Ma, Grain growth rate constant of hot-pressed alumina ceramics, Mater. Lett., 44(2000), No. 1, p. 14.CrossRefGoogle Scholar
  124. [124]
    S.C. Liao, Y.J. Chen, B.H. Kear, and W.E. Mayo, High pressure/low temperature sintering of nanocrystalline alumina, Nanostruct. Mater., 10(1998), No. 6, p. 1063.CrossRefGoogle Scholar
  125. [125]
    L. Gao, J.S. Hong, H. Miyamoto, and S.D.D.L. Torre, Bending strength and micro-structure of Al2O3 ceramics densified by spark plasma sintering, J. Eur. Ceram. Soc., 20(2000), No. 12, p. 2149.CrossRefGoogle Scholar
  126. [126]
    Y. Zhou, K. Hirao, Y. Yamauchi, and S. Kanzaki, Densification and grain growth in pulse electric current sintering of alumina, J. Eur. Ceram. Soc., 24(2004), No. 12, p. 345.CrossRefGoogle Scholar
  127. [127]
    N.J. Lóh, L. Simăo, C.A. Faller, A. de Noni Jr, and O.R.K. Montedo, A review of two-step sintering for ceramics, Ceram. Int., 42(2016), No. 11, p. 12556.CrossRefGoogle Scholar
  128. [128]
    T. Spusta, J. Svoboda, and K. Maca, Study of pore closure during pressure-less sintering of advanced oxide ceramics, Acta Mater., 115(2016), p. 347.CrossRefGoogle Scholar
  129. [129]
    A. Krell, J. Klimke and T. Hutzler, Advanced spinel and sub-μm Al2O3 for transparent armor applications, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 275.CrossRefGoogle Scholar
  130. [130]
    M.J. Mayo, Processing of nanocrystalline ceramics from ultrafine particles, Int. Mater. Rev., 41(1996), No. 3, p. 85.CrossRefGoogle Scholar
  131. [131]
    M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, and L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: a review, J. Funct. Biomater., 6(2015), No. 4, p. 1099.CrossRefGoogle Scholar
  132. [132]
    S. Ji, Q. Gu, and B. Xia, Porosity dependence of mechanical properties of solid materials, J. Mater. Sci., 41(2006), No. 6, p. 1757.CrossRefGoogle Scholar
  133. [133]
    M.A. Taha, G.M. Elkomy, H.A. Mostafa, and E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al-4.5wt% Cu nanocomposites prepared by mechanical alloying, Mater. Chem. Phys., 206(2018), p. 116.CrossRefGoogle Scholar
  134. [134]
    M.A. Taha, A.H. Nassar, and M.F. Zawrah, Effect of milling parameters on sinterability, mechanical properties of Cu-4wt% ZrO2 nanocomposite, Mater. Chem. Phys., 181(2016), p. 26.CrossRefGoogle Scholar
  135. [135]
    M.F. Zawrah, H.A. Zayed, R.A. Essawy, A.H. Nassar, and M.A. Taha, Preparation by mechanical alloying, characterization and sintering of Cu-20wt% Al2O3 nanocomposites, Mater. Des., 46(2013), p. 485.CrossRefGoogle Scholar
  136. [136]
    I.Y. Guzman, Reaction sintering and its practical application, Glass Ceram., 50(1993), No. 9–10, p, 412.Google Scholar
  137. [137]
    M.A. Encinas-Romero, J. Peralta-Haley, and J.L. Valenzuela-García, Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route, J. Biomater. Nanobiotechnol., 4(2013), No. 4, p. 327.CrossRefGoogle Scholar
  138. [138]
    S. Lala, S. Brahmachari, P.K. Das, D. Das, T. Kar, and S.K. Pradhan, Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time, Mater. Sci. Eng. C, 42(2014), p. 647.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Mohammed A. Taha
    • 1
  • Rasha A. Youness
    • 2
  • M.F. Zawrah
    • 3
    Email author
  1. 1.Solid State Physics DepartmentNational Research CentreDokki, CairoEgypt
  2. 2.Spectroscopy DepartmentNational Research CentreDokki, CairoEgypt
  3. 3.Refractories, Ceramics and Building Material DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations