Mechanism of Mg2+ dissolution from olivine and serpentine: Implication for bioleaching of high-magnesium nickel sulfide ore at elevated pH

  • Jian-zhi Sun
  • Jian-kang WenEmail author
  • Bo-wei Chen
  • Biao Wu


To inhibit the dissolution of Mg2+ during the bioleaching process of high-magnesium nickel sulfide ore, the effect of major bi-oleaching factors on the dissolution of Mg2+ from olivine and serpentine was investigated and kinetics studies were carried out. The results indicated that the dissolution rate-controlling steps are chemical reaction for olivine and internal diffusion for serpentine. The most influential factor on the dissolution of Mg2+ from olivine and serpentine was temperature, followed by pH and particle size. A novel method of bi-oleaching at elevated pH was used in the bioleaching of Jinchuan ore. The results showed that elevated pH could significantly reduce the dissolution of Mg2+ and acid consumption along with slightly influencing the leaching efficiencies of nickel and cobalt. A model was used to explain the leaching behaviors of high-magnesium nickel sulfide ore in different bioleaching systems. The model suggested that olivine will be depleted eventually, whereas serpentine will remain because of the difference in the rate-controlling steps. Bioleaching at elevated pH is a suitable method for treating high-magnesium nickel sulfide ores.


olivine serpentine high-magnesium nickel sulfide ore bioleaching shrinking core model elevated pH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51574036 and 51404033). The authors are grateful to all the members of the National Engineering Laboratory of Biohydrometallurgy, GRINM Group Corporation Limited, China.


  1. [1]
    G.M. Mudd and S.M. Jowitt, A detailed assessment of global nickel resource trends and endowments, Econ. Geol., 109(2014), No. 7, p. 1813.CrossRefGoogle Scholar
  2. [2]
    S.H. Yin, L.M. Wang, E. Kabwe, X. Chen, R.F. Yan, K. An, L. Zhang, and A.X. Wu, Copper bioleaching in China: Review and prospect, Minerals, 8(2018), No. 2, p. 32.CrossRefGoogle Scholar
  3. [3]
    F. Remonsellez, F. Galleguillos, M. Moreno-Paz, V. Parro, M. Acosta, and C. Damergasso, Dynamic of active microorganisms inhabiting a bioleaching industrial heap of low-grade copper sulfide ore monitored by real-time PCR and oligo-nucleotide prokaryotic acidophile microarray, Microb. Biotechnol., 2(2009), No. 6, p. 613.CrossRefGoogle Scholar
  4. [4]
    K.B. Fu, H. Lin, X.L. Mo, H. Wang, H.W. Wen, and Z.L. Wen, Comparative study on the passivation layers of copper sulphide minerals during bioleaching, Int. J. Miner. Metall. Mater., 19(2012), No. 10, p. 886.CrossRefGoogle Scholar
  5. [5]
    M. Riekkola-Vanhanen, Talvivaara mining company–From a project to a mine, Miner. Eng., 48(2013), p. 2.CrossRefGoogle Scholar
  6. [6]
    J. Fewings and S. Seet, bacterial leaching at elevated pH using BioHeap™ technology, [in]_Proceeding of ALTA 2012 Nickel Cobalt Copper Conference, Perth, 2012. p. 370.Google Scholar
  7. [7]
    J.K. Wen, B.W. Chen, H. Shang, and G.C. Zhang, Research progress in biohydrometallurgy of rare metals and heavy nonferrous metals with an emphasis on China, Rare Met., 35(2016), No. 6, p. 433.CrossRefGoogle Scholar
  8. [8]
    B.W. Chen, L.L. Cai, B. Wu, X. Liu, and J.K. Wen, Investigation of bioleaching of a low grade nickel-cobalt-copper sulfide ore with high magnesium as olivine and serpentine from Lao, Adv. Mater. Res., 825(2013), p. 396.CrossRefGoogle Scholar
  9. [9]
    S.J. Barnes and M.L. Fiorentini, Komatiite magmas and sulfide nickel deposits: A comparison of variably endowed arc-hean terranes, Econ. Geol., 107(2012), No. 5, p. 755.CrossRefGoogle Scholar
  10. [10]
    R.M. Ruan, X.Y. Liu, G. Zou, J.H. Chen, J.K. Wen, and D.Z. Wang, Industrial practice of a distinct bioleaching system operated at low pH, high ferric concentration, elevated temperature and low redox potential for secondary copper sulfide, Hydrometallurgy, 108(2011), No. 1–2, p. 130.CrossRefGoogle Scholar
  11. [11]
    S. Ilyas, C. Ruan, H.N. Bhatti, I.A. Bhatti, and M.A. Ghauri, Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite, Bio-process Biosyst. Eng., 35(2012), No. 3, p. 433.CrossRefGoogle Scholar
  12. [12]
    S.J. Zhen, Z.Q. Yan, Y.S. Zhang, J. Wang, M. Campbell, and W.Q. Qin, Column bioleaching of a low grade nickel-bearing sulfide ore containing high magnesium as olivine, chlorite and antigorite, Hydrometallurgy, 96(2009), No. 4, p. 337.CrossRefGoogle Scholar
  13. [13]
    W.Q. Qin, S.J. Zhen, Z.Q. Yan, M. Campbell, J. Wang, K. Liu, and Y.S. Zhang, Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite, Hydrometallurgy, 98(2009), No. 1–2, p. 58.CrossRefGoogle Scholar
  14. [14]
    D.P. Tang, J.G. Duan, Q.Y. Gao, Y. Zhao, Y. Li, P. Chen, J.P. Zhou, Z.R. Wu, R.X. Xu, and H.Y. Li, Strand-specific RNA-seq analysis of the Acidithiobacillus ferrooxidans transcriptome in response to magnesium stress, Arch. Microbiol., 200(2018), No. 7, p. 1025.CrossRefGoogle Scholar
  15. [15]
    S.J. Zhen, W.Q. Qin, Z.Q. Yan, Y.S. Zhang, J. Wang, and L.Y. Ren, Bioleaching of low grade nickel sulfide mineral in column reactor, Trans. Nonferrous Met. Soc. China, 18(2008), No. 6, p. 1480.CrossRefGoogle Scholar
  16. [16]
    W.C. Yi, R.M. Santos, A. Monballiu, K. Ghyselbrecht, J.A. Martens, M.L.T. Mattos, T. van Gerven, and B. Meesschaert, Effects of bioleaching on the chemical, mineralogical and morphological properties of natural and waste-derived alkaline materials, Miner. Eng., 48(2013), p. 116.CrossRefGoogle Scholar
  17. [17]
    V.L.A. Salo-Zieman, P.H.M. Kinnunen, and J.A. Puhakka, Bioleaching of acid-consuming low-grade nickel ore with elemental sulfur addition and subsequent acid generation, J. Chem. Technol. Biotechnol., 81(2006), p. 34.CrossRefGoogle Scholar
  18. [18]
    J.Z. Sun, B.W. Chen, J.K. Wen, and B. Wu, Nickel bioleaching at elevated pH: Research and application, Solid State Phenom., 262(2017), p. 197.CrossRefGoogle Scholar
  19. [19]
    S. Ilyas, R. Chi, H.N. Bhatti, I.A. Bhatti, and M.A. Ghauri, Column bioleaching of low-grade mining ore containing high level of smithsonite, talc, sphaerocobaltite and azurite, Bio-process Biosyst. Eng., 35(2012), No. 3, p. 433.CrossRefGoogle Scholar
  20. [20]
    Z.W. Zhu, K. Tulpatowicz, Y. Pranolo, and C.Y. Cheng, Fe(III) removal from a synthetic chloride leach solution of nickel laterite by N,N–diethyldodecanamide, Miner. Eng., 61(2014), p. 47.CrossRefGoogle Scholar
  21. [21]
    X. Liu, J.K. Wen, B. Wu, and S. Liu, Magnesium-rich gangue dissolution in column bioleaching of chalcopyrite, Rare Met., 34(2015), No. 5, p. 366.CrossRefGoogle Scholar
  22. [22]
    R.A. Cameron, R. Lastra, W.D. Gould, S. Mortazavi, Y. Thibault, P.L. Bedard, L. Morin, D.W. Koren, and K.J. Kennedy, Bioleaching of six nickel sulphide ores with differing mineralogies in stirred-tank reactors at 30°C, Miner. Eng., 49(2013), p. 172.CrossRefGoogle Scholar
  23. [23]
    R.A. Cameron, R. Lastra, S. Mortazavi, P.L. Bedard, L. Morin, W.D. Gould, and K.J. Kennedy, Bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at elevated pH, Hydrometallurgy, 97(2009), No. 3–4. p. 213.CrossRefGoogle Scholar
  24. [24]
    R.A. Cameron, C.W. Yeung, C.W. Greer, W.D. Gould, S. Mortazavi, P.L. Bédard, L. Morin, L. Lortie, O. Dinardo, and K.J. Kennedy, The bacterial community structure during bi-oleaching of a low-grade nickel sulphide ore in stirred-tank reactors at different combinations of temperature and pH, Hydrometallurgy, 104(2010), No. 2. p. 207.CrossRefGoogle Scholar
  25. [25]
    R.A. Cameron, R. Lastra, S. Mortazavi, W.D. Gould, Y. Thibault, P.L. Bedard, L. Morin, and K.J. Kennedy, Elevated-pH bioleaching of a low-grade ultramafic nickel sulphide ore in stirred-tank reactors at 5 to 45 °C, Hydrometal-lurgy, 99(2009), No. 1, p. 77.CrossRefGoogle Scholar
  26. [26]
    F.K. Crundwell, The mechanism of dissolution of forsterite, olivine and minerals of the orthosilicate group, Hydrometallurgy, 150(2014), p. 68.CrossRefGoogle Scholar
  27. [27]
    D. Daval, R. Hellmann, I. Martinez, S. Gangloff, and F. Guyot, Lizardite serpentine dissolution kinetics as a function of pH and temperature, including effects of elevated pCO2, Chem. Geol., 351(2013), p. 245.CrossRefGoogle Scholar
  28. [28]
    V. Safari, G. Arzpeyma, F. Rashchi, and N. Mostoufi, A shrinking particle—shrinking core model for leaching of a zinc ore containing silica, Int. J. Miner. Process., 93(2009), No. 1, p. 79.CrossRefGoogle Scholar
  29. [29]
    O.S. Pokrovsky and J. Schott, Forsterite surface composition in aqueous solutions: a combined potentiometric, electrokinetic, and spectroscopic approach, Geochim. Cosmochim. Acta, 64(2000), No. 19. p. 3299.CrossRefGoogle Scholar
  30. [30]
    K. Yoo, K. Byung-Su, K. Min-Seuk, L. Jae-Chun, and J. Jeong, Dissolution of magnesium from serpentine mineral in sulfuric acid solution, Mater. Trans., 50(2009), No. 5. p. 1225.CrossRefGoogle Scholar
  31. [31]
    H. Takasu, S. Funayama, N. Uchiyama, H. Hoshino, Y. Tamura, and Y. Kato, Kinetic analysis of the carbonation of lithium orthosilicate using the shrinking core model, Ceram. Int., 44(2018), No. 10, p. 11835.CrossRefGoogle Scholar
  32. [32]
    C. Li, B. Liang and S.P. Chen, Combined milling–dissolution of Panzhihua ilmenite in sulfuric acid, Hydrometallurgy, 82(2006), No. 1–2, p. 93.CrossRefGoogle Scholar
  33. [33]
    T. Yoshioka, T. Motoki, and A. Okuwaki, Kinetics of hydrolysis of poly(ethylene terephthalate) powder in sulfuric acid by a modified shrinking-core model, Ind. Eng. Chem. Res., 40(2001), No. 1, p. 75.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Jian-zhi Sun
    • 1
  • Jian-kang Wen
    • 1
    Email author
  • Bo-wei Chen
    • 1
  • Biao Wu
    • 1
  1. 1.National Engineering Laboratory of BiohydrometallurgyGRINM Group Corporation LimitedBeijingChina

Personalised recommendations