Solid solution evolution during mechanical alloying in Cu-Nb-Al compounds

  • Kaouther Zaara
  • Mahmoud Chemingui
  • Virgil OptasanuEmail author
  • Mohamed Khitouni


This work concerns the structural evolution of Cu70Nb20Al10 (at%) alloy processed by mechanical alloying using a planetary ball mill in air atmosphere for different times (4 to 200 h). The morphological, structural, micro structural, and thermal behaviors of the alloy were investigated by scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, and differential scanning calorimetry. X-ray diffraction patterns were examined using the Rietveld refinement technique with the help of the MAUD software. A disordered FCC-Cu(Nb,Al) solid solution was formed after 8 h of milling. The crystallite size, microstrain, and lattice parameter were determined by the Rietveld method. With increasing milling time, the crystallite size of the final product—ternary -phase FCC-Cu(Nb,Al)—is refined to the nanometer scale, reaching 12 nm after 200 h. This crystallographic structure combines good mechanical strength and good ductility. An increase in microstrain and partial oxidation were also observed with increasing milling time.


powder metallurgy mechanical alloying nanomaterials copper-based alloy solid solution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metall. Trans., 1(1970), No. 10, p. 2943.Google Scholar
  2. [2]
    A.R. Yavari, P.J. Desre, and T. Banameur, Mechanically driven alloying of immiscible elements, Phys. Rev. Lett., 68(1992), No. 14, p. 2235.CrossRefGoogle Scholar
  3. [3]
    K. Uenishi, K.F. Kobayashi, S. Nasu, H. Hatano, K.N. Ishibara, and P.H. Shingu, Mechanical alloying in the Fe-Cu system, Z. Metallkd., 83(1992), No. 2, p. 132.Google Scholar
  4. [4]
    J. Kuyama, H. Inui, S. Imaoka, K.N. Ishihara, and P.H. Shinhu, Nanometer-sized crystals formed by the mechanical alloying in the Ag-Fe system, Jpn. J. Appl. Phys., 30(1991), No. 5A, p. L854.CrossRefGoogle Scholar
  5. [5]
    C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci., 46(2001), No. 1–2, p. 1.CrossRefGoogle Scholar
  6. [6]
    M.S. El-Eskandarany, Mechanical Alloying for Fabrication of Advanced Engineering Materials, Noyes Publications/William Andrew Publishing, Norwich, N.Y., 2001, p. 154.Google Scholar
  7. [7]
    M.S. Khoskhoo, S. Scudinio, J. Thomas, K.B. Sureddi, and J. Eckert, Grain and crystalline size evaluation of cryomilled pure copper, J. Alloys Compd., 509(2011), p. S343.CrossRefGoogle Scholar
  8. [8]
    H. Abdoli, H. Farnoush, E. Salahi, and K. Pourazrang, Study of the densification of a nanostructured composite powder Part 1: effect of compaction pressure and reinforcement addition, Mater. Sci. Eng A, 486(2008), No. 1–2, p. 580.CrossRefGoogle Scholar
  9. [9]
    J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, and A.K. Basu, Microstructural characterization of amorphous and nanocrys-talline boron nitride prepared by high-energy ball milling, Mater. Res. Bull., 43(2008), No. 4, p. 1023.CrossRefGoogle Scholar
  10. [10]
    J. Torrens-Serra, I. Peral, J. Rodriguez-Viejo, and M.T. Clavaguera-Mora, Micro structure evolution and grain size distribution in nanocrystalline FeNbBCu from synchrotron XRD and TEM analysis, J. Non-Cryst. Solids, 358(2012), No. 1, p. 107.CrossRefGoogle Scholar
  11. [11]
    F. Hadef, A. Otomani, A. Djekoun, and J.M. Greneche, Structural and microstructural study of nanostructured Fe50Al40Ni10 powders produced by mechanical alloying, Mater. Charact., 62(2011), No. 8,p. 751.CrossRefGoogle Scholar
  12. [12]
    H. Dutta, A. Sen, J. Bhattacharjee, and S.K. Pradhan, Preparation of ternary Ti0.9Ni0.1C cermets by mechanical alloying: microstructure characterization by Rietveld method and electron microscopy, J. Alloys Compd., 493(2010), No. 1–2, p. 666.CrossRefGoogle Scholar
  13. [13]
    A. Inoue, Bulk amorphous alloys, [in] Amorphous and Nanocrystalline Materials, Springer, Berlin, 2001, p. 1.CrossRefGoogle Scholar
  14. [14]
    S.Z. Kou, L. Feng, Y.T. Ding, G.J. Xu, Z.F. Ding, and P.Q. La, Synthesis and magnetic properties of Cu-based amorphous alloys made by mechanical alloying, Intermetallics, 12(2004), No. 10–11, p. 1115.CrossRefGoogle Scholar
  15. [15]
    G.M. Wang, S.S. Fang, X.S. Xiao, Q. Hua, J.Z. Gu, and YD. Dong, Microstructure and properties of Zr65Al10Ni10Cu15 amorphous plates rolled in the supercooled liquid region, Mater. Sci. Eng. A, 373(2004), No. 1–2, p. 217.CrossRefGoogle Scholar
  16. [16]
    M. Gogebakan, The effect of Si addition on crystallization behaviour of amorphous Al-Y-Ni alloy, J. Mater. Eng. Perform., 13(2004), No. 4, p. 504.CrossRefGoogle Scholar
  17. [17]
    R.S. Lei, M.P. Wang, H.P. Wang, and S.Q. Xu, New insights on the formation of supersaturated Cu-Nb solid solution prepared by mechanical alloying, Mater. Charact, 118(2016), p. 324.CrossRefGoogle Scholar
  18. [18]
    M.A. Morris and D.G. Morris, Microstructure refinement and associated strength of copper alloys obtained by mechanical alloying, Mater. Sci. Eng. A, 111(1989), p. 115.CrossRefGoogle Scholar
  19. [19]
    A. Benghalem and D.G. Morris, Microstructure and mechanical properties of concentrated alloys prepared by mechanical alloying, Mater. Sci. Eng. A, 161(1993), No. 2, p. 255.CrossRefGoogle Scholar
  20. [20]
    E. Botcharova, M. Heilmaier, J. Freudenberger, G. Drew, D. Kudashow, U. Martin, and L. Schultz, Supersaturated solid solution of niobium in copper by mechanical alloying, J. Alloys Compd, 351(2003), No. 1–2, p. 119.CrossRefGoogle Scholar
  21. [21]
    E. Botcharova, J. Freudenberger, and L. Schultz, Cu-Nb alloys prepared by mechanical alloying and subsequent heat treatment, J. Alloys Compd., 365(2004), No. 1–2, p. 157.CrossRefGoogle Scholar
  22. [22]
    S. Mula, H. Bahmanpour, S. Mal, P.C. Kang, M. Atwater, W. Jian, R.O. Scattergood, and C.C. Koch, Thermodynamic feasibility of solid solubility extension of Nb in Cu and their thermal stability, Mater. Sci. Eng. A, 539(2012), p. 330.CrossRefGoogle Scholar
  23. [23]
    R.S. Lei, M.P. Wang, Z. Li, H.G. Wei, W.C. Yang, Y.L. Jia, and S. Gong, Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4475.CrossRefGoogle Scholar
  24. [24]
    M. Azabou, H.I. Gharsallah, L. Escoda, J.J. Sunol, A.W. Kolsi, and M. Khitouni, Mechanochemical reactions in nano-crystalline Cu-Fe system induced by mechanical alloying in air atmosphere, Powder Technol., 224(2012), p. 338.CrossRefGoogle Scholar
  25. [25]
    M. Khitouni, R. Daly, M. Mhadhbi, and A. Kolsi, Structural evolution in nanocristalline Cu obtained by high energy mechanical milling: phases formation of copper oxides, J. Alloys Compd., 475(2009), No. 1–2, p. 581.CrossRefGoogle Scholar
  26. [26]
    S.M. Yoon, C. Nagarjuna, D.W. Shin, C.H. Lee, B. Madava-li, S.J. Hong, and K.H. Lee, Influence of milling atmosphere on thermoelectric properties of p-type Bi-Sb-Te based alloys by mechanical alloying, J. Korean Powder Metall. Inst, 24(2017), No. 5, p. 357.CrossRefGoogle Scholar
  27. [27]
    Z.Q. Zhao, Z. Xiao, Z. Li, M.N. Zhu, and Z.Q. Yang, Characterization of dispersion strengthened copper alloy prepared by internal oxidation combined with mechanical alloying, J. Mater. Eng. Perform., 26(2017), No. 11, p. 5641.CrossRefGoogle Scholar
  28. [28]
    M. do Carmo Amorim da Silva and S.J.G. de Lima, Evolution of mechanical alloying to obtain Cu-Al-Nb shape memory alloy, Mater. Res., 8(2005), No. 2, p. 169.CrossRefGoogle Scholar
  29. [29]
    L. Lutterotti, S. Matthies, and H. R. Wenk, MAUD: a friendly Java program for material analysis using diffraction, IUCr: Newsletter of the CPD, 21(1999), p.14.Google Scholar
  30. [30]
    J. Eckert, J.C. Holzer, and W.L. Johnson, Thermal stability and grain growth behavior of mechanically alloyed nano-crystalline Fe-Cu alloys, J. Appl. Phys., 73(1993), No. 1, p. 131.CrossRefGoogle Scholar
  31. [31]
    F.A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Mater, 51(2003), No. 14, p. 4107.CrossRefGoogle Scholar
  32. [32]
    T. Bachaga, R. Daly, L. Escode, J.J. Suñol, and M. Khitouni, Amorphization of Al50(Fe2B)30Nb20 mixture by mechanical alloying, Metall. Mater. Trans. A, 44(2013), No. 10, p. 4718.CrossRefGoogle Scholar
  33. [33]
    M. Krifa, M. Mhadhbi, L. Escoda, J. Saurina, J.J. Suñol, N. Llorca-Isern, C. Artieda-Guzmán, and M. Khitouni, Phase transformation during mechanical alloying of Fe-30% Al-20% Cu, Powder Technol, 246(2013), p. 117.CrossRefGoogle Scholar
  34. [34]
    H.I. Gharsallah, T. Makhlouf, L. Escoda, J.J. Suñol, and M. Khitouni, Magnetic and microstructural proprieties of nano-crystalline Fe-25at% Al and Fe-25at% Al + 0.2at% B alloys prepared by mechanical alloying process, Eur. Phys. J. Plus, 131(2016), No. 7, p. 119.CrossRefGoogle Scholar
  35. [35]
    S. Bergheul, H. Tafat, and M. Azzaz, Formation and magnetic properties of nanocrystalline Fe60Co40 alloys produced by mechanical alloying, J. Mater. Eng. Perform., 15(2006), No. 3, p. 349.CrossRefGoogle Scholar
  36. [36]
    D.Y. Ying, and D.L. Zhang, Processing of Cu-Al2O3 metal matrix nanocomposite materials by using high energy ball milling, Mater. Sci. Eng. A, 286(2000), No. 1, p. 152.CrossRefGoogle Scholar
  37. [37]
    M. Gherib, A. Otmani, A. Djekoun, A. Bouasla, M. Poulain, and M. Legouira, Study of nanocrystalline NiAl alloys prepared by mechanical alloying, Defect Diffus. Forum, 329(2012), p. 19.CrossRefGoogle Scholar
  38. [38]
    Y.C. Zhang, J.Y. Tang, G.L. Wang, M. Zhang, and X.Y. Hu, Facile synthesis of submicron Cu2O and CuO crystallites from a solid metallorganic molecular precursor, J. Cryst. Growth, 294(2006), No. 2, p. 278.CrossRefGoogle Scholar
  39. [39]
    M.D. Abad, S. Parker, D. Kiene, M.M. Primorac, and P. Hosemann, Mcrostructure and mechanical properties of CUxNb1-x. alloys prepared by ball milling and high pressure torsion compacting, J. Alloys Compd., 630(2015), p. 117.CrossRefGoogle Scholar
  40. [40]
    W. Pfeiler, Alloy Physics: A Comprehensive Reference, John Wileys and Sons, New York, 2008.Google Scholar
  41. [41]
    R.S. Lei, S.Q. Xu, M.P. Wang, and H.P. Wang, Mcrostructure and properties of nanocrystalline copper-niobium alloy with high strength and high conductivity, Mater. Sci. Eng. A, 586(2013), p. 367.CrossRefGoogle Scholar
  42. [42]
    M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, and M. Khitouni, Stacking faults and structural characterization of mechanically alloyed Ni50Cu(Fe2B)10P30 powders, Eur. Phys. J. Plus, 130(2015), No. 4, p. 72.CrossRefGoogle Scholar
  43. [43]
    S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, and P.V. Satyanarayana, X-ray peak broadening analysis of AA 6061100-x-x wt.% A12O3 nanocomposite prepared by mechanical alloying, Mater. Charact, 62(2011), No. 7, p. 661.CrossRefGoogle Scholar
  44. [44]
    Y.H. Zhao, HW. Sheng, and K. Lu, Mcrostructure evolution and thermal properties in nanocrystalline Fe during mechanical attrition, Acta Mater, 49(2001), No. 2, p. 365.CrossRefGoogle Scholar
  45. [45]
    C. Slama and M. Abdellaoui, Mcrostructure characterization of nanocrystalline (Ti0.9W0.1) C prepared by mechanical alloying, Int. J. Refract. Met. Hard Mater, 54(2016), p. 270.CrossRefGoogle Scholar
  46. [46]
    M. Slimi, M. Azabou, L. Escoda, J.J. Sunol, and M. Khitouni, Structural and microstructural properties of nanocrystalline Cu-Fe-Ni powders produced by mechanical alloying, Powder Technol., 266(2014), p. 262.CrossRefGoogle Scholar
  47. [47]
    I. Hideaki, M. Toshiyuki, and N. Keiji, Measurement of enthalpies of formation of niobium oxides at 920 K in a Tian-Calvet-type calorimeter, J. Chem. Thermodyn., 16(1984), No. 5, p. 411.CrossRefGoogle Scholar
  48. [48]
    K.T. Jacob, C. Shekhar, M. Vinay, and Y. Waseda, Thermodynamic properties of niobium oxides, J. Chem. Eng. Data, 55(2010), No 11, p. 4854.CrossRefGoogle Scholar
  49. [49]
    R. Novakovic, Thermodynamics, surface properties and microscopic functions of liquid Al-Nb and Nb-Ti alloys, J. Non-Cryst. Solids, 356(2010), No. 31–32, p. 1593.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Kaouther Zaara
    • 1
  • Mahmoud Chemingui
    • 1
  • Virgil Optasanu
    • 2
    Email author
  • Mohamed Khitouni
    • 1
  1. 1.Laboratory of Inorganic Chemistry, UR 11-ES-73University of SfaxSfaxTunisia
  2. 2.ICB, UMR 6303 CNRSUniversity of Bourgogne Franche ComtéDijon CedexFrance

Personalised recommendations