Graphite addition for SiC formation in diamond/SiC/Si composite preparation

  • Wei ZhengEmail author
  • Xin-bo He
  • Mao Wu
  • Xuan-hui Qu
  • Rong-jun Liu
  • Dan-dan Guan


Herein, graphite was used in the Si-vapor reactive infiltration of diamond/SiC/Si composites to produce composites with various SiC contents. X-ray diffraction was used to determine the phases of the composite, whereas scanning electron microscopy was used to confirm the Si–C reaction between the silicon, graphite, and diamond and to observe the SiC morphology. Various SiC contents in the composite were observed with graphite addition. Furthermore, the reaction between silicon and graphite (diamond) produced coarse (fine) SiC particles. The generation of a 10-μm-diameter Si–C area on the surface of the diamond was observed. The thermal conductivity (TC) and coefficient of thermal expansion (CTE) of the composite was investigated, where the TC varied from 317–426 W•m−1•K−1 with the increase of the SiC volume fraction from 38% to 76% and the corresponding CTE increased from 1.7 × 10-6 to 3.7 × 10−6 K−1, respectively. Furthermore, a critical point for the CTE was found to exist at approximately 250°C, where the composite was under a hydrostatic condition. Finally, the bending strength was found to range from 241 to 341 MPa.


diamond SiC graphite diffusion composite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The work was financially supported by the National Key R&D Program of China (Nos. 2016YFB0301402 and 2016YFB0301400) and the National Natural Science Foundation of China (No. 51274040).


  1. [1]
    Z.F. Zhao, Y.S. Liu, W. Feng, Q. Zhang, L.F. Cheng, and L.T. Zhang, Improvement on the thermal conductivity of di-amond/CVI-SiC composites using large diamond particles, Diamond Relat. Mater., 74(2017), p. 1.CrossRefGoogle Scholar
  2. [2]
    B. Matthey, S. Höhn, A.K. Wolfrum, U. Mühle, M. Motylenko, D. Rafaja, A. Michaelis, and M. Herrmann, Micro-structural investigation of diamond-SiC composites produced by pressureless silicon infiltration, J. Eur. Ceram. Soc., 37(2017), No. 5, p. 1917.CrossRefGoogle Scholar
  3. [3]
    Y.Y. Li, Y. Yu, X.X. Cao, Q. Wang, T. Li, Z. Hu, H.L. He, and D.W. He, Enhancing dynamic strength of diamond-SiC composite: Design and performance, Comput. Mater. Sci., 145(2018), p. 80.CrossRefGoogle Scholar
  4. [4]
    G.A. Voronin, T.W. Zerda, J. Qian, Y. Zhao, D. He, and S.N. Dub, Diamond–SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders, Diamond Relat. Mater., 12(2003), No. 9, p. 1477.CrossRefGoogle Scholar
  5. [5]
    E.A. Ekimov, S. Gierlotka, E.L. Gromnitskaya, J.A. Kozubowski, B. Palosz, W. Lojkowski, and A.M. Naletov, Mechanical properties and microstructure of diamond–SiC nanocomposites, Inorg. Mater., 38(2002), No. 11, p. 1117.CrossRefGoogle Scholar
  6. [6]
    Y. Zhao, J. Qian, L.L. Daemen, C. Pantea, J. Zhang, G.A. Voronin, and T.W. Zerda, Enhancement of fracture toughness in nanostructured diamond–SiC composites, Appl. Phys. Lett., 84(2004), No. 8, p. 1356.CrossRefGoogle Scholar
  7. [7]
    J. Qian, G. Voronin, T.W. Zerda, D. He, and Y. Zhao, High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures, J. Mater. Res., 17(2002), No. 8, p. 2153.CrossRefGoogle Scholar
  8. [8]
    J. Gubicza, T. Ungár, Y. Wang, G. Voronin, C. Pantea, and T.W. Zerda, Microstructure of diamond–SiC nanocomposites determined by x-ray line profile analysis, Diamond Relat. Mater., 15(2006), No. 9, p. 1452.CrossRefGoogle Scholar
  9. [9]
    C. Pantea, A.G. Voronin, T.W. Zerda, J.Z. Zhang, L.P. Wang, Y.B. Wang, T. Uchida, and Y.S. Zhao, Kinetics of SiC formation during high P–T reaction between diamond and silicon, Diamond Relat. Mater., 14(2005), No. 10, p. 1611.CrossRefGoogle Scholar
  10. [10]
    E.A. Ekimov, A.G. Gavriliuk, B. Palosz, S. Gierlotka, P. Dluzewski, E. Tatianin, Yu. Kluev, A.M. Naletov, and A. Presz, High-pressure, high-temperature synthesis of SiC–diamond nanocrystalline ceramics, Appl. Phys. Lett., 77(2000), No. 7, p. 954.CrossRefGoogle Scholar
  11. [11]
    C.X. Zhu, J. Lang, and N.G. Ma, Preparation of Si–diamond–SiC composites by in-situ reactive sintering and their thermal properties, Ceram. Int., 38(2012), No. 8, p. 6131.CrossRefGoogle Scholar
  12. [12]
    K. Mlungwane, M. Herrmann, and I. Sigalas, The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites, J. Eur. Ceram. Soc., 28(2008), No. 1, p. 321.CrossRefGoogle Scholar
  13. [13]
    P. Unifantowicz, S. Vaucher, M. Lewandowska, and K.J. Kurzydłowski, Mechanism of SiC crystals growth on {100} and {111} diamond surfaces upon microwave heating, Mater. Charact., 61(2010), No. 6, p. 648.CrossRefGoogle Scholar
  14. [14]
    A.A. Shiryaev and F. Gaillard, Local redox buffering by carbon at low pressures and the formation of moissanite–natural SiC, Eur. J. Mineral., 26(2014), No. 1, p. 53.CrossRefGoogle Scholar
  15. [15]
    H. Zhou, and R.N. Singh, Kinetics model for the growth of silicon carbide by the reaction of liquid silicon with carbon, J. Am. Ceram. Soc., 78 (1995), No. 9, p. 2456.CrossRefGoogle Scholar
  16. [16]
    F. Hodaj, O. Dezellus, J.N. Barbier, A. Mortensen, and N. Eustathopoulos, Diffusion-limited reactive wetting: effect of interfacial reaction behind the advancing triple line, J. Mater. Sci., 42(2007), No. 19, p. 8071.CrossRefGoogle Scholar
  17. [17]
    K. Mlungwane, I. Sigalas, M. Herrmann, and M. Rodríguez, The wetting behaviour and reaction kinetics in diamond–silicon carbide systems, Ceram. Int., 35(2009), No. 6, p. 2435.CrossRefGoogle Scholar
  18. [18]
    J.S. Park, R. Sinclair, D. Rowcliffe, M. Stern, and H. Davidson, Orientation relationship in diamond and silicon carbide composites, Diamond Relat. Mater., 16(2007), No. 3, p. 562.CrossRefGoogle Scholar
  19. [19]
    D. Wittorf, W. Jäger, C. Dieker, A. Flöter, and H. Güttler, Electron microscopy of interfaces in chemical vapour deposition diamond films on silicon, Diamond Relat. Mater., 9(2000), No. 9–10, p. 1696.CrossRefGoogle Scholar
  20. [20]
    L. Xue, Z.A. Su, X. Yang, D. Huang, T. Yin, C.X. Liu, and Q.Z. Huang, Microstructure and ablation behavior of C/C-HfC composites prepared by precursor infiltration and pyrolysis, Corros. Sci., 94(2015), p. 165.CrossRefGoogle Scholar
  21. [21]
    Y. Liu, Q.G. Fu, B.H. Wang, T.Y. Liu, and J. Sun, The ablation behavior and mechanical property of C/C-SiC-ZrB2 composites fabricated by reactive melt infiltration, Ceram. Int., 43 (2017), No. 8, p. 6138.CrossRefGoogle Scholar
  22. [22]
    Y. Jiang, D. Feng, C.C. Ye, W. Wang, and H.Q. Ru, Preparation and characterization of Si-SiC coated graphite materials, J. Mater. Metall., 17(2018), No. 1, p. 50.Google Scholar
  23. [23]
    Q.G. Fu, Y.C. Shan, C.W. Cao, H.J. Li, and K.Z. Li, Oxidation and erosion resistant property of SiC/Si-Mo-Cr/MoSi2 multi-layer coated C/C composites, Ceram. Int., 41(2014), No. 3, p. 4101.CrossRefGoogle Scholar
  24. [24]
    M. Herrmann, B. Matthey, S. Höhn, I. Kinski, D. Rafaja, and A. Michaelis, Diamond-ceramics composites—New materials for a wide range of challenging applications, J. Eur. Ceram. Soc., 32(2012), No. 9, p. 1915.CrossRefGoogle Scholar
  25. [25]
    R.J. Liu, Y.B. Cao, C.L. Yan, C.R. Zhang, and P.B. He, Preparation and characterization of diamond-silicon carbide-silicon composites by gaseous silicon vacuum infiltration process, J. Superhard Mater., 36(2014), No. 6, p. 410.CrossRefGoogle Scholar
  26. [26]
    L. Chen, X. Yang, Z.A. Su, C.Q. Fang, G. Zeng, and Q.Z. Huang, Fabrication and performance of micro-diamond modified C/SiC composites via precursor impregnation and pyrolysis process, Ceram. Int., 44(2018), No. 8, p. 9601.CrossRefGoogle Scholar
  27. [27]
    Z.Q. Tan, Z.Z. Chen, G.L. Fan, G. Li, J. Zhang, R. Xu, A.D. Shan, Z.J. Li, and D. Zhang, Effect of particle size on the thermal and mechanical properties of aluminum composites reinforced with sic and diamond, Mater. Des., 90(2016), 845–851.CrossRefGoogle Scholar
  28. [28]
    S. Nauyoks, M. Wieligor, T.W. Zerda, L. Balogh, T. Ungar, and P. Stephens, Stress and dislocations in diamond–SiC composites sintered at high pressure, high temperature conditions, Composites Part A, 40(2009), No. 5, p. 566.CrossRefGoogle Scholar
  29. [29]
    M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297.CrossRefGoogle Scholar
  30. [30]
    M. Tayyebi and B. Eghbali, Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 357.CrossRefGoogle Scholar
  31. [31]
    Y.S. Liu, C.H. Hu, W. Feng, J. Men, L.F. Cheng, and L.T. Zhang, Microstructure and properties of diamond/SiC composites prepared by tape-casting and chemical vapor infiltration process, J. Eur. Ceram. Soc., 34(2014), No. 15, p. 3489.CrossRefGoogle Scholar
  32. [32]
    Y.S. Liu, C.H. Hu, J. Men, W. Feng, L.F. Cheng, and L.T. Zhang, Effect of diamond content on microstructure and properties of diamond/SiC composites prepared by tape-casting and cvi process, J. Eur. Ceram. Soc., 35(2015), No. 8, p. 2233.CrossRefGoogle Scholar
  33. [33]
    P. Sangsuwan, S.N. Tewari, J.E. Gatica, M. Singh, and R. Dickerson, Reactive infiltration of silicon melt through microporous amorphous carbon preforms, Metall. Mater. Trans. B, 30(1999), No. 5, p. 933.CrossRefGoogle Scholar
  34. [34]
    E. Fitzer and R. Gadow, Fiber-reinforced silicon carbide, Am. Ceram. Soc. Bull., 65(1986), No. 2, p. 326.Google Scholar
  35. [35]
    M.H. Hon and R.F. Davis, Self-diffusion of 14C in polycrys-talline β-SiC, J. Mater. Sci., 14(1979), No. 10, p. 2411.CrossRefGoogle Scholar
  36. [36]
    R. Pampuch, E. Walasek, and J. Bialoskórski, Reaction mechanism in carbon-liquid silicon systems at elevated temperature, Ceram. Int., 12(1986), No. 2, p. 99.CrossRefGoogle Scholar
  37. [37]
    G.R. Sawyer and T.F. Page, Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides, J. Mater. Sci., 13(1978), No. 4, p. 885.CrossRefGoogle Scholar
  38. [38]
    Ness, J. N. and Page, T. F, Microstructural evolution in reaction-bonded silicon carbide, J. Mater. Sci., 21(1986), No. 4, p. 1377.CrossRefGoogle Scholar
  39. [39]
    M.H. Hon, R.F. Davis, and D.E. Newbury, Self-diffusion of 30Si in polycrystalline β-SiC, J. Mater. Sci., 15(1980), No. 8, p. 2073.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Wei Zheng
    • 1
    Email author
  • Xin-bo He
    • 1
  • Mao Wu
    • 1
  • Xuan-hui Qu
    • 1
  • Rong-jun Liu
    • 2
  • Dan-dan Guan
    • 1
  1. 1.Insititute for Advanced Material and TechnologyUniversity of Science & Technology BeijingBeijingChina
  2. 2.College of Aerospace and Materials EngineeringNational University of Defence TechnologyChangshaChina

Personalised recommendations