Advertisement

Effect of NaCl on synthesis of ZrB2 by a borothermal reduction reaction of ZrO2

  • Yu Wang
  • Yue-dong Wu
  • Ke-han Wu
  • Shu-qiang Jiao
  • Kuo-chih Chou
  • Guo-hua ZhangEmail author
Article
  • 15 Downloads

Abstract

ZrB2 powders were synthesized via a borothermal reduction reaction of ZrO2 with the assistance of NaCl under a flowing Ar atmosphere. The optimal temperature and reaction time were 1223 K and 3 h, respectively. Compared with the reactions conducted without the addition of NaCl, those performed with the addition of an appropriate amount of NaCl finished at substantially lower temperatures. However, the addition of too much NaCl suppressed this effect. With the assistance of NaCl, a special morphology of polyhedral ZrB2 particles covered with ZrB2 nanosheets was obtained. Moreover, the experimental results revealed that the special morphology was the result of the combined effects of B2O3 and NaCl. The formation of the special microstructure is explained on the basis of the “dissolution–recrystallization” mechanism.

Keywords

zirconium diboride borothermal reduction ultra-high temperature ceramics dissolution–recrystallization mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

This work was financially supported by the Fundamental Research Funds for the Central Universities, China (No. FRF-GF-17-B41).

References

  1. [1]
    M.S. Asl, B. Nayebi, Z. Ahmadi, M.J. Zamharir, and M. Shokouhimehr, Effects of carbon additives on the properties of ZrB2-based composites: A review, Ceram. Int., 44(2018), No. 7, p. 7334.CrossRefGoogle Scholar
  2. [2]
    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc., 90(2007), No. 5, p. 1347.CrossRefGoogle Scholar
  3. [3]
    F. Monteverde, R. Savino, and M. De Stefano Fumo, Dynamic oxidation of ultra-high temperature ZrB2–SiC under high enthalpy supersonic flows, Corros. Sci., 53(2011), No. 3, p. 922.CrossRefGoogle Scholar
  4. [4]
    Z. Amirsardari, R.M. Aghdam, M. Salavati-Niasari, and S. Niasari, Enhanced thermal resistance of GO/C/phenolic nanocomposite by introducing ZrB2 nanoparticles, Composites Part B, 76(2015), p. 174.CrossRefGoogle Scholar
  5. [5]
    F. Monteverde, A. Bellosi, and S. Guicciardi, Processing and properties of zirconium diboride-based composites, J. Eur. Ceram. Soc., 22(2002), No. 3, p. 279.CrossRefGoogle Scholar
  6. [6]
    S.Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: A review, J. Eur. Ceram. Soc., 29(2009), No. 6, p. 995.CrossRefGoogle Scholar
  7. [7]
    R.X. Li, H.J. Lou, S. Yin, Y. Zhang, Y.S. Jiang, B. Zhao, J.P. Li, Z.H. Feng, and T. Satob, Nanocarbon-dependent synthesis of ZrB2 in a binary ZrO2 and boron system, J. Alloys Compd., 509(2011), No. 34, p. 8581.CrossRefGoogle Scholar
  8. [8]
    L. Ma, J.C. Yu, X. Guo, Y.S. Zhang, Y.R. Feng, H. Zong, Y.J. Zhang, and H.Y. Gong, Effects of HBO2 on phase and morphology of ZrB2 powders synthesized by carbothermal reduction, Ceram. Int., 43(2017), No. 15, p. 12975.CrossRefGoogle Scholar
  9. [9]
    J.H. Liu, Z. Huang, C.G. Huo, F.L. Li, H.J. Zhang, and S.W. Zhang, Low-temperature rapid synthesis of rod-like ZrB2 powders by molten-salt and microwave co-assisted carbothermal reduction, J. Am. Ceram. Soc., 99(2016), No. 9, p. 2895.CrossRefGoogle Scholar
  10. [10]
    S.W. Zhang, M. Khangkhamano, H.J. Zhang, and H.A Yeprem, Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction, J. Am. Ceram. Soc., 97(2014), No. 6, p. 1686.CrossRefGoogle Scholar
  11. [11]
    L. Zoli, P. Galizia, L. Silvestroni, and D. Sciti, Synthesis of group IV and V metal diboride nanocrystals via borothermal reduction with sodium borohydride, J. Am Ceram. Soc., 101(2018), No. 6, p. 2627.CrossRefGoogle Scholar
  12. [12]
    M. Jalaly, M.S. Bafghi, M. Tamizifar, and F.J. Gotor, An investigation on the formation mechanism of nano ZrB2, powder by a magnesiothermic reaction, J. Alloys Compd., 588(2018), p. 36CrossRefGoogle Scholar
  13. [13]
    L.Y. Bai, H.C. Jin, C. Lu, F.L. Yuan, S.L Huang, and J.L. Li, RF thermal plasma-assisted metallothermic synthesis of ultrafine ZrB2 powders, Ceram. Int., 41(2015), No. 6, p. 7312.CrossRefGoogle Scholar
  14. [14]
    M. Salavati-Niasari, M. Dadkhah, and F. Davar, Pure cubic ZrO2 nanoparticles by thermolysis of a new precursor, Polyhedron, 28(2009), No. 14, p. 3005.CrossRefGoogle Scholar
  15. [15]
    S. Zinatloo-Ajabshir and M. Salavati-Niasari, Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: Structural, optical and photocatalytic studies, J. Mol. Liq., 216(2016), p. 545.CrossRefGoogle Scholar
  16. [16]
    S. Zinatloo-Ajabshir and M. Salavati-Niasari, Synthesis of pure nanocrystalline ZrO2 via a simple sonochemical-assisted route, J. Ind. Eng. Chem., 20(2014), No. 5, p. 3313.CrossRefGoogle Scholar
  17. [17]
    S. Zinatloo-Ajabshir, M. Salavati-Niasari, and Z. Zinatloo-Ajabshir, Nd2Zr2O7–Nd2O3 nanocomposites: New facile synthesis, characterization and investigation of photocatalytic behavior, Mater. Lett., 180(2016), p. 27.CrossRefGoogle Scholar
  18. [18]
    C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.H. Jung, Y.B. Kang, J. Melançon, A.D. Pelton, C. Robelin, and S. Petersen, FactSage thermochemical software and databases — recent developments, Calphad, 33(2009), No. 2, p. 295.CrossRefGoogle Scholar
  19. [19]
    W.M. Guo, D.W. Tan, Z.L. Zhang, L.X. Wu, and H.T. Lin, Synthesis of fine ZrB2 powders by new borothermal reduction of coarse ZrO2 powders, Ceram. Int., 42(2016), No. 13 p. 15087.CrossRefGoogle Scholar
  20. [20]
    S.L. Ran, O. Van der Biest, and J. Vleugels, ZrB2 powders synthesis by borothermal reduction, J. Am. Ceram. Soc., 93(2010), No. 6, p. 1586.Google Scholar
  21. [21]
    Z.T. Liu, Y.N. Wei, X. Meng, T.T. Wei, and S.L. Ran, Synthesis of CrB2 powders at 800°C under ambient pressure, Ceram. Int., 43(2017), No. 1, p. 1628.CrossRefGoogle Scholar
  22. [22]
    G.J. Janz, Molten salts data as reference standards for density, surface tension, viscosity, and electrical conductance: KNO3 and NaCl, J. Phys. Chem. Ref. Data, 9(2015), No. 4, p. 791.CrossRefGoogle Scholar
  23. [23]
    J.D. Mackenzie, The viscosity, molar volume, and electric conductivity of liquid boron trioxide, Trans. Faraday Soc., 52(1956), p. 1564.CrossRefGoogle Scholar
  24. [24]
    X.L. Hu, Y. Masuda, T. Ohji, and K. Kato, Dissolution-recrystallization induced hierarchical structure in ZnO: Bunched roselike and core-shell-like particles, Cryst. Growth Des., 10(2010), No. 2, p. 626.CrossRefGoogle Scholar
  25. [25]
    F. Beshkar, H. Khojasteh, and M. Salavati-Niasari, Flower-like CuO/ZnO hybrid hierarchical nanostructures grown on copper substrate: Glycothermal synthesis, characterization, hydrophobic and anticorrosion properties, Materials, 10(2017), No. 7, p. 697.CrossRefGoogle Scholar
  26. [26]
    Z.H. Ding, Q.H. Deng, D.W. Shi, X.B. Zhou, Y. Li, S.L. Ran, and Q. Huang, Synthesis of hexagonal columnar ZrB2 powders through dissolution-recrystallization approach by microwave heating method, J. Am. Ceram. Soc., 97(2015), No. 10, p. 3037.CrossRefGoogle Scholar
  27. [27]
    Y.W. Wang, J.T. He, C.C. Liu, W.H. Chong, and H.Y. Chen, Thermodynamics versus kinetics in nanosynthesis, Angew. Chem. Int. Ed., 54(2015), No. 7, p. 2022.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yu Wang
    • 1
  • Yue-dong Wu
    • 1
  • Ke-han Wu
    • 1
  • Shu-qiang Jiao
    • 1
  • Kuo-chih Chou
    • 1
  • Guo-hua Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations