Advertisement

Influence of nickel addition on the microstructure and mechanical properties of Al2O3-5vol%ZrO2 ceramic composites prepared via precipitation method

  • Betül Kafkaslıoğlu YıldızEmail author
  • Hüseyin Yılmaz
  • Yahya Kemal Tür
Article
  • 20 Downloads

Abstract

The aim of this work was to investigate the microstructure and mechanical properties of 1 vol%-Ni-added yttria-stabilized zirconia (YSZ) toughened alumina composites. First, Ni powders were heterogeneously precipitated in an alumina-zirconia powder mixture suspended in water; the prepared specimens were then pressureless sintered at 1550°C/2 h in a 90vol%Ar/10vol% H2 atmosphere. The structure of phases and microstructure of the composites were characterized by X-ray diffraction and scanning electron microscopy, respectively. Mechanical characterization of the specimens was carried out through Vickers hardness, Vickers indentation toughness, and three-point flexural bending tests. The fine Ni particles were homogeneously dispersed throughout the alumina matrix because of the employed processing method. Furthermore, hardness and toughness values were found to increase by 8% and 50%, respectively, with Ni addition, whereas the relative densities and flexural strength values were found to remain unchanged.

Keywords

alumina zirconia ceramic matrix microstructure hardness strength toughness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The support of Gebze Technical University Scientific Research Council to project with a grant number BAP 2017-A105-48 is greatly appreciated.

References

  1. [1]
    A. Arab, Z.A. Ahmad, and R. Ahmad, Effects of yttria stabilized zirconia (3Y-TZP) percentages on the ZTA dynamic mechanical properties, Int. J. Refract. Met. Hard Mater., 50(2015), p. 157.CrossRefGoogle Scholar
  2. [2]
    X.F. Zhang and Y.C. Li, On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target, Mater. Des., 31(2010), No. 4, p. 1945.CrossRefGoogle Scholar
  3. [3]
    L. Vargas-Gonzalez, R.F. Speyer, and J. Campbell, Flexural strength, fracture toughness, and hardness of silicon carbide and boron carbide armor ceramics, Int. J. Appl. Ceram. Technol., 7(2010), No. 5, p. 643.CrossRefGoogle Scholar
  4. [4]
    A. Belenky and D. Rttel, Static and dynamic flexural strength of 99.5% alumina: Relation to porosity, Mech. Mater., 48(2012), p. 43.CrossRefGoogle Scholar
  5. [5]
    E. Medvedovski, Alumina-mullite ceramics for structural applications, Ceram. Int., 32(2006), No. 4, p. 369.CrossRefGoogle Scholar
  6. [6]
    A. Nastic, A. Merati, M. Bielawski, M. Bolduc, O. Fakolujo, and M. Nganbe, Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened A1203 and SiC armor, J. Mater. Sci. Technol., 31(2015), No. 8, p. 773.CrossRefGoogle Scholar
  7. [7]
    P.G. Karandikar, G. Evans, S. Wong, M.K. Aghajanian, and M. Sennett, A review of ceramics for armor applications, Ceram. Eng. Sci. Proc., 29(2009), No. 6, p. 163.Google Scholar
  8. [8]
    E. Medvedovski, Ballistic performance of armour ceramics: Influence of design and structure. Part 1, Ceram. Int., 36(2010), No. 7, p. 2103.CrossRefGoogle Scholar
  9. [9]
    I. Danilenko, G. Lasko, I. Brykhanova, V. Burkhovetski, and L. Ahkhozov, The peculiarities of structure formation and properties of zirconia-based nanocomposites with addition of A1203 and NiO, Nanoscale Res. Lett., 12(2017), No. 1, p. 125.CrossRefGoogle Scholar
  10. [10]
    W.H. Tuan, R.Z. Chen, T.C. Wang, C.H. Cheng, and P.S. Kuo, Mechanical properties of Al2O3/ZrO2 composites, J. Eur. Ceram. Soc., 22(2002), No. 16, p. 2827.CrossRefGoogle Scholar
  11. [11]
    W.M. Ma, L. Wen, R.G. Guan, X.D. Sun, and X.K. Li, Sintering densification, microstructure and transformation behavior of Al2O3/ZrO2(Y2O3) composites, Mater. Sci. Eng. A, 477(2008), No. 1-2, p. 100.CrossRefGoogle Scholar
  12. [12]
    H.L. Calambás Pulgarin and M.P. Albano, Sintering, micro-structure and hardness of different alumina-zirconia composites, Ceram. Int., 40(2014), No. 4, p. 5289.Google Scholar
  13. [13]
    A. Krell and P. Blank, Grain size dependence of hardness in dense submicrometer alumina, J. Am. Ceram. Soc., 78(1995), No. 4, p. 1118.CrossRefGoogle Scholar
  14. [14]
    N.A. Rejab, W.K. Lee, Z.D.I. Sktani, and Z.A. Ahmad, Hardness and toughness enhancement of CeO2 addition to ZTA ceramics through HIPping technique, Int. J. Refract. Met. Hard Mater., 69(2017), p. 60.CrossRefGoogle Scholar
  15. [15]
    A. Arab, R. Ahmad, and Z.A. Ahmad, Effect of SrCO3 addition on the dynamic compressive strength of ZTA, Int. J. Miner. Metall. Mater., 23(2016), No. 4, p. 481.CrossRefGoogle Scholar
  16. [16]
    A.M. Hassan, S.M. Naga, and M. Awaad, Toughening and strengthening of Nb2O5 doped zirconia/alumina (ZTA) composites, Int. J. Refract. Met. Hard Mater., 48(2015), p. 338.CrossRefGoogle Scholar
  17. [17]
    J.S. Moya, T. Rodriguez-Suarez, S. Lopez-Esteban, C. Pe-charroman, R. Torrecillas, L.A. Diaz, and M. Nygren, Diamond-like hardening of alumina/Ni nanocomposites, Adv. Eng. Mater., 9(2007),No. 10, p. 898.CrossRefGoogle Scholar
  18. [18]
    W.H. Tuan, S.M. Liu, C.J. Ho, C.S. Lin, T.J. Yang, D.M. Zhang, Z.Y. Fu, and J.K. Guo, Preparation of Al2O3-ZrO2-Ni nanocomposite by pulse electric current and pressureless sintering, J. Eur. Ceram. Soc., 25(2005), No. 13, p. 3125.CrossRefGoogle Scholar
  19. [19.
    V.G. Karayannis and A.K. Moutsatsou, Synthesis and characterization of nickel-alumina composites from recycled nickel powder, Adv. Mater. Sci. Eng., 2012(2012), art. No. 395612.Google Scholar
  20. [20]
    G.J. Li, X.X. Huang, and J.K. Guo, Fabrication and mechanical properties of Al2O3-Ni composite from two different powder mixtures, Mater. Sci. Eng. A, 352(2003), No. 1-2, p. 23.CrossRefGoogle Scholar
  21. [21]
    B. Kafkashoglu and Y.K. Tur, Pressureless sintering of Al2O3/Ni nanocomposites produced by heterogeneous precipitation method with varying nickel contents, Int. J. Refract. Met. Hard Mater., 57(2016), p. 139.CrossRefGoogle Scholar
  22. [22]
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements, J. Am. Ceram. Soc., 64(1981), No. 9, p. 533.CrossRefGoogle Scholar
  23. [23]
    F.F. Lange and M.M. Hirlinger, Hindrance of grain growth in A12O3 by ZrO2 inclusions, J. Am. Ceram. Soc., 67(1984), No. 3, p. 164.CrossRefGoogle Scholar
  24. [24]
    R. Asthana, S.T. Mileiko, and N. Sobczak, Wettability and interface considerations in advanced heat-resistant Ni-base composites, Bull. Pol. Acad. Sci. Tech. Sci., 54(2006), No. 2, p. 147.Google Scholar
  25. [25]
    M. Kuntz and R. Krüger, The effect of microstructure and chromia content on the properties of zirconia toughened alumina, Ceram. Int., 44(2018), No. 2. p. 2011.Google Scholar
  26. [26]
    H.M. Bian, Y. Yang, Y. Wang, W. Tian, H.F. Jiang, Z.J. Hu, and W.M. Yu, Effect of microstructure of composite powders on microstructure and properties of microwave sintered alumina matrix ceramics, J. Mater. Sci. Technol., 29(2013), No. 5, p. 429.CrossRefGoogle Scholar
  27. [27]
    T. Rodriguez-Suarez, J.F. Bartolome, and J.S. Moya, Mechanical and tribological properties of ceramic/metal composites: A review of phenomena spanning from the nanometer to the micrometer length scale, J. Eur. Ceram. Soc., 32(2012), No. 15, p. 3887.CrossRefGoogle Scholar
  28. [28]
    C. Pecharroman, F. Esteban-Betegon, J.F. Bartolome, G. Richter, and J.S. Moya, Theoretical model of hardening in zirconia-nickel nanoparticle composites, Nano Lett., 4(2004), No. 4, p. 747.CrossRefGoogle Scholar
  29. [29]
    T. Rodriguez-Suarez, J.F. Bartolome, A. Smirnov, S. Lopez-Esteban, R. Torrecillas, and J.S. Moya, Sliding wear behavior of alumina/nickel nanocomposites processed by a conventional sintering route, J. Eur. Ceram. Soc., 31(2011), No. 8, p. 1389.CrossRefGoogle Scholar
  30. [30]
    W.H. Tuan, J.R. Chen, and C.J. Ho, Critical zirconia amount to enhance the strength of alumina, Ceram. Int., 34(2008), No. 8, p. 2129.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Betül Kafkaslıoğlu Yıldız
    • 1
    Email author
  • Hüseyin Yılmaz
    • 1
  • Yahya Kemal Tür
    • 1
  1. 1.Department of Materials Science and EngineeringGebze Technical UniversityGebze, KocaeliTurkey

Personalised recommendations