Advertisement

Friction stir welding of pure magnesium and polypropylene in a lap-joint configuration: Microstructure and mechanical properties

  • Amirhossein Moghanian
  • Moslem Paidar
  • Seyyed Salman SeyedafghahiEmail author
  • Olatunji Oladimeji Ojo
Article
  • 4 Downloads

Abstract

A hybrid joint with a satisfactory mixture of pure magnesium and polypropylene (PP) was achieved via friction stir joining (FSW) in a lap-joint configuration. The tool rotational and travel speeds used in this work were 500–700 r/min and 50–100 mm/min, respectively. The mechanical properties and microstructural analysis of the resultant hybrid Mg/PP joint were examined. The results show that the maximum tensile shear strength (22.5 MPa) of the joint was attained at 700 r/min and 75 mm/min due to the optimum percentage fraction of mechanical interlocking (48%) and the presence of magnesium oxide. The interfacial joint center exhibits the maximum microhardness values because of the presence of refined and intertwined Mg fragments and density dislocations in the matrix of the PP. The joint failed via two different modes: interfacial line and weld zone fractures, respectively.

Keywords

welding microstructure pure magnesium polypropylene rotational speed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    P. Kah, R. Suoranta, J. Martikainen, and C. Magnus, Techniques for joining dissimilar materials: Metals and polymers, Rev. Adv. Mater. Sci., 36(2014), p. 152.Google Scholar
  2. [2]
    Y.X. Huang, X.C. Meng, Y.H. Wang, Y.M. Xie, and L. Zhou, Joining of aluminum alloy and polymer via friction stir lap welding, J. Mater. Process. Technol., 257(2018), p. 148.CrossRefGoogle Scholar
  3. [3]
    K. Nagatsuka, S. Yoshida, A. Tsuchiya, and K. Nakata, Direct joining of carbon-fiber-reinforced plastic to an aluminum alloy using friction lap joining, Composites Part B, 73(2015), p. 82.CrossRefGoogle Scholar
  4. [4]
    R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, 50(2005), No. 1–2, p. 1.CrossRefGoogle Scholar
  5. [5]
    R. Nandan, T. Debroy, and H.K.D.H. Bhadeshia, Recent advances in friction-stir welding — Process, weldment structure and properties, Prog. Mater. Sci., 53(2008), No. 6, p. 980.CrossRefGoogle Scholar
  6. [6]
    M. Paidar, O.O. Ojo, A. Moghanian, A.S. Karapuzha, and A. Heidarzadeh, Modified friction stir clinching with protuberance-keyhole levelling: A process for production of welds with high strength, J. Manuf. Processes, 41(2019), p. 177.CrossRefGoogle Scholar
  7. [7]
    H.K. Pabandi, H.R. Jashnani, and M. Paidar, Effect of precipitation hardening heat treatment on mechanical and microstructure features of dissimilar friction stir welded AA2024-T6 and AA6061-T6 alloys, J. Manuf. Processes, 31(2018), p. 214.CrossRefGoogle Scholar
  8. [8]
    B. Heinz and B. Skrotzki, Characterization of a friction-stir-welded aluminum alloy 6013, Metall. Mater. Trans. B, 33(2002), No. 3, p. 489.CrossRefGoogle Scholar
  9. [9]
    A.C. Somasekharan and L.E. Murr, Characterization of complex, solid-state flow and mixing in the friction-stir welding (FSW) of aluminum alloy 6061-T6 to magnesium alloy AZ91D using color metallography, J. Mater. Sci., 41(2006), No. 16, p. 5365.CrossRefGoogle Scholar
  10. [10]
    J.A. Schneider and A.C. Nunes Jr., Characterization of plastic flow and resulting microtextures in a friction stir weld, Metall. Mater. Trans. B, 35(2004), No. 4, p. 777.CrossRefGoogle Scholar
  11. [11]
    Z. Kiss and T. Czigány, Microscopic analysis of the morphology of seams in friction stir welded polypropylene, eXPRESS Polym. Lett., 6(2012), No. 1, p. 54.CrossRefGoogle Scholar
  12. [12]
    M. Elyasi and H.A. Derazkola, Experimental and thermo-mechanical study on FSW of PMMA polymer T-joint, Int. J. Adv. Manuf Technol., 97(2018), No. 1–4, p. 1445.CrossRefGoogle Scholar
  13. [13]
    H. A. Derazkola and A. Simchi, An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate), Thin Walled Struct., 135(2019), p. 376.CrossRefGoogle Scholar
  14. [14]
    J.Y. Sheikh-Ahmad, D. S. Ali, S. Deveci, F. Almaskari, and F. Jarrar, Friction stir welding of high density polyethylene-Carbon black composite, J. Mater. Process. Technol., 264(2019), p. 402.CrossRefGoogle Scholar
  15. [15]
    S. Aliasghari, P. Skeldon, X. Zhou, and M. Ghorbani, Influence of PEO and mechanical keying on the strength of AA 5052 alloy/polypropylene friction stir spot welded joints, Int. J. Adhes. Adhes., 92(2019), p. 65.CrossRefGoogle Scholar
  16. [16]
    F. Lambiase, A. Paoletti, V. Grossi, and A. Di Ilio, Analysis of loads, temperatures and welds morphology in FSW of polycarbonate, J. Mater. Process. Technol., 266(2019), p. 639.CrossRefGoogle Scholar
  17. [17]
    S.T. Amancio-Filho, C. Bueno, J.F. dos Santos, N. Huber, and E. Hage Jr., On the feasibility of friction spot joining in magnesium/fiber-reinforced polymer composite hybrid structures, Mater. Sci. Eng. A, 528(2011), No. 10–11, p. 3841.CrossRefGoogle Scholar
  18. [18]
    X. Cao, Q.Y. Shi, D.M. Liu, Z.L. Feng, Q. Liu, and G.Q. Chen, Fabrication of in situ carbon fiber/aluminum composites via friction stir processing: Evaluation of microstructural, mechanical and tribological behaviors, Composites Part B, 139(2018), p. 97.CrossRefGoogle Scholar
  19. [19]
    H. Shahmiri, M. Movahedi, and A.H. Kokabi, Friction stir lap joining of aluminium alloy to polypropylene sheets, Sci. Technol. Weld. Joining, 22(2017), No. 2, p. 120.CrossRefGoogle Scholar
  20. [20]
    H.A. Derazkola and A. Simchi, Experimental and thermo-mechanical analysis of the effect of tool pin profile on the friction stir welding of poly (methyl methacrylate) sheets, J. Manuf. Processes, 34(2018), p. 412.CrossRefGoogle Scholar
  21. [21]
    M.R. Hajideh, M. Farahani, S.A.D. Alavi, and N.M. Ramezani, Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets, J. Manuf. Processes, 26(2017), p. 269.CrossRefGoogle Scholar
  22. [22]
    H.A. Derazkola, R.K. Fard, and F. Khodabakhshi, Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer, Weld. World, 62(2018), No. 1, p. 117.CrossRefGoogle Scholar
  23. [23]
    H.A. Derazkola, F. Khodabakhshi, and A. Simchi, Friction-stir lap-joining of aluminum-magnesium/poly-methyl-methacrylate hybrid structures: thermo-mechanical modelling and experimental feasibility study, Sci. Technol Weld. Joining, 23(2018), No. 1, p. 35.CrossRefGoogle Scholar
  24. [24]
    F. Lambiase, A. Paoletti, V. Grossi, and S. Genna, Improving energy efficiency in friction assisted joining of metals and polymers, J. Mater. Process. Technol., 250(2017), p. 379.CrossRefGoogle Scholar
  25. [25]
    F. Yusof, Y. Miyashita, N. Seo, Y. Mutoh, and R. Moshvan, Utilising friction spot joining for dissimilar joint between aluminium alloy (A5052) and polyethylene terephthalate, Sci. Technol. Weld. Joining, 17(2012), No. 7, p. 544.CrossRefGoogle Scholar
  26. [26]
    H.A. Derazkola and M. Elyasi, The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate, J. Manuf. Processes, 35(2018), p. 88.CrossRefGoogle Scholar
  27. [27]
    F. Khodabakhshi, M. Haghshenas, S. Sahraeinejad, J. Chen, B. Shalchi, J. Li, and A.P. Gerlich, Microstructure-property characterization of a friction-stir welded joint between AA5059 aluminum alloy and high-density polyethylene, Mater. Charact., 98(2014), p. 73.CrossRefGoogle Scholar
  28. [28]
    A.R. Patel, D.J. Kotadiya, J.M. Kapopara, C.G. Dalwadi, N.P. Patel, and H.G. Rana, Investigation of mechanical properties for hybrid joint of aluminium to polymer using friction stir welding (FSW), Mater. Today: Proc., 5(2018), No. 2, p. 4242.Google Scholar
  29. [29]
    M.R. Nakhaei, G. Naderi, and A. Mostafapour, Effect of processing parameters on morphology and tensile properties of PP/EPDM/organoclay nanocomposites fabricated by friction stir processing, Iran. Polym. J., 25(2016), No. 2, p. 179.CrossRefGoogle Scholar
  30. [30]
    A.R. Patel, C.G. Dalwadi, and H.G. Rana, A Review: dissimilar material joining of metal to polymer using friction stir welding (FSW), Int. J. Sci. Technol. Eng., 2(2016), No. 10, p. 702.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Amirhossein Moghanian
    • 1
  • Moslem Paidar
    • 2
  • Seyyed Salman Seyedafghahi
    • 3
    Email author
  • Olatunji Oladimeji Ojo
    • 4
  1. 1.Department of Materials EngineeringImam Khomeini International UniversityQazvinIran
  2. 2.Department of Material Engineering, South Tehran BranchIslamic Azad UniversityTehranIran
  3. 3.Department of Engineering, Faculty of Materials Science and EngineeringImam Hossein UniversityTehranIran
  4. 4.Department of Industrial and Production EngineeringFederal University of Technology AkureAkureNigeria

Personalised recommendations