Enhancement of thermal stability and UV resistance of halloysite nanotubes using zinc oxide functionalization via a solvent-free approach

  • Keemi Lim
  • Wen Shyang ChowEmail author
  • Swee Yong Pung


The aim of this study was to synthesize and evaluate the thermal properties and ultraviolet (UV) resistance of zinc oxide-functionalized halloysite nanotubes (HNT-ZnO). The HNT-ZnO was synthesized using a facile solvent-free route. The properties of the HNT-ZnO nanofillers were characterized using zeta-potential measurement, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The immobilization of ZnO nanoparticles onto HNT is feasible even at the lowest mass ratio of HNT/ZnO. The TGA results indicate that the thermal stability of the HNT-ZnO nanofillers is higher than that of the HNT. Furthermore, UV-Vis diffuse reflectance spectroscopy (UV-DRS) results show that the HNT-ZnO achieve a total reflectance as high as approximately 87.5% in the UV region, as compare with 66.9% for the HNT. In summary, the immobilization of ZnO onto HNT is a viable approach for increasing the thermal stability and improving the UV shielding of HNT.


halloysite nanotubes zinc oxide nanoparticle ultraviolet shielding thermal properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to express their appreciation to Universiti Sains Malaysia for Bridging Fund (grant No. 304.PBAHAN.6316090).


  1. [1]
    E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Halloysite clay minerals — a review, Clay Miner., 40(2005), No. 4, p. 383.CrossRefGoogle Scholar
  2. [2]
    L. Guimarães, A.N. Enyashin, G. Seifert, and H.A. Duarte, Structural, electronic, and mechanical properties of single-walled halloysite nanotube models, J. Phys. Chem. C, 114(2010), No. 26, p. 11358.CrossRefGoogle Scholar
  3. [3]
    M.X. Liu, Z.X. Jia, D.M. Jia, and C.R. Zhou, Recent advance in research on halloysite nanotubes-polymer nanocomposite, Prog. Polym. Sci., 39(2014), No. 8, p. 1498.CrossRefGoogle Scholar
  4. [4]
    K.A. Zahidah, S. Kakooei, M.C. Ismail, and P.B. Raja, Halloysite nanotubes as nanocontainer for smart coating application: A review, Prog. Org. Coat., 111(2017), p. 175.CrossRefGoogle Scholar
  5. [5]
    R. Kamble, M. Ghag, S. Gaikawad, and B.K. Panda, Halloysite nanotubes and applications: A review, J. Adv. Sci. Res., 3(2012), No. 2, p. 25.Google Scholar
  6. [6]
    T.S. Gaaz, A.B. Sulong, A.A.H. Kadhum, A.A. Al-Amiery, M.H. Nassir, and A.H. Jaaz, The impact of halloysite on the thermo-mechanical properties of polymer composites, Molecules, 22(2017), No. 5, art. No. 838.Google Scholar
  7. [7]
    E. Abdullayev and Y. Lvov, Halloysite clay nanotubes for controlled release of protective agents, J. Nanosci. Nanotechnol., 11(2011), No. 11, p. 10007.CrossRefGoogle Scholar
  8. [8]
    P. Yuan, D.Y. Tan, and F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci., 112–113(2015), p. 75.CrossRefGoogle Scholar
  9. [9]
    Y.T. Yang, Y. Chen, F. Leng, L. Huang, Z.J. Wang, and W.Q. Tian, Recent advances on surface modification of halloysite nanotubes for multifunctional applications, Appl. Sci., 7(2017), No. 12, art. No. 1215.Google Scholar
  10. [10]
    D. Rawtani and Y.K. Agrawal, Multifarious applications of halloysite nanotubes: A review, Rev. Adv. Mater. Sci., 30(2012), No. 3, p. 282.Google Scholar
  11. [11]
    M. Kotal and A.K. Bhowmick, Polymer nanocomposites from modified clays: Recent advances and challenges, Prog. Polym. Sci., 51(2015), p. 127.CrossRefGoogle Scholar
  12. [12]
    A. Bratovčić, A. Odobašić, S. Ćatić, and I. Šestan, Application of polymer nanocomposite materials in food packaging, Croat. J. Food Sci. Technol., 7(2015), No. 2, p. 86.CrossRefGoogle Scholar
  13. [13]
    S. Karimi and A. Ataie, Characterization of mechanothermally processed nanostructured ZnO, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 588.CrossRefGoogle Scholar
  14. [14]
    W. Chamorro, J. Ghanbaja, Y. Battie, A.E. Naciri, F. Soldera, F. Mücklich, and D. Horwat, Local structure-driven localized surface plasmon absorption and enhanced photoluminescence in ZnO-Au thin films, J. Phys. Chem. C, 120(2016), p. 29405.CrossRefGoogle Scholar
  15. [15]
    S. Sabir, M. Arshad, and S.K. Chaudhari, Zinc oxide nanoparticles for revolutionizing agriculture: synthesis and applications, Sci. World J., 2014(2014), art. No. 925494.Google Scholar
  16. [16]
    E.A. Stefanescu, C. Daranga, and C. Stefanescu, Insight into the broad field of polymer nanocomposites: from carbon nanotubes to clay nanoplatelets, via metal nanoparticles, Materials, 2(2009), No. 4, p. 2095.CrossRefGoogle Scholar
  17. [17]
    P. Uikey and K. Vishwakarma, Review of zinc oxide (ZnO) nanoparticles applications and properties, Int. J. Emerg. Technol. Comput. Sci. Electron, 21(2016), No. 2, p. 239.Google Scholar
  18. [18]
    X. Huang, M. Wang, L.D. Shao, M.G. Willinger, C.S. Lee, and X.M. Meng, Polarity-free epitaxial growth of heterostructured ZnO/ZnS core/shell nanobelts, J. Phys. Chem. Lett., 4(2013), No. 5, p. 740.CrossRefGoogle Scholar
  19. [19]
    J.Z. Li, M.J. Zhou, Z.F. Ye, H.Q. Wang, C.C. Ma, P.W. Huo, and Y.S. Yan, Enhanced photocatalytic activity of g-C3N4-ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation, RSC Adv., 5(2015), No. 111, p. 91177.CrossRefGoogle Scholar
  20. [20]
    H.X. Peng, X.H. Liu, W. Tang, and R.Z. Ma, Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties, Sci. Rep., 7(2017), art. No. 2250.Google Scholar
  21. [21]
    B.Y.K. Ho, Development of light-stable PVC stabilizer systems for rigid weatherable applications, J. Vinyl Tech., 6(1984), No. 4, p. 162.CrossRefGoogle Scholar
  22. [22]
    A.L. Andrady, S.H. Hamid, X. Hu, and A. Torikai, Effects of increased solar ultraviolet radiation on materials, J. Photochem. Photobiol. B, 46(1998), No. 1–3, p. 96.CrossRefGoogle Scholar
  23. [23]
    I.N. Gogotov and S.K. Barazov, The effect of ultraviolet light and temperature on the degradation of composite polypropylene, Int. Polym. Sci. Technol., 41(2014), No. 3, p. 55.CrossRefGoogle Scholar
  24. [24]
    J. Tocháček and Z. Vrátníčková, Polymer life-time prediction: The role of temperature in UV accelerated ageing of polypropylene and its copolymers, Polym. Test., 36(2014), p. 82.CrossRefGoogle Scholar
  25. [25]
    Z. Shu, Y. Zhang, J. Ouyang, and H.M. Yang, Characterization and synergetic antibacterial properties of ZnO and CeO2 supported by halloysite, Appl. Surf. Sci., 420(2017), No. 135, p. 833.CrossRefGoogle Scholar
  26. [26]
    J. Zhuang and G.R. Yu, Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals, Chemosphere, 49(2002), No. 6, p. 619.CrossRefGoogle Scholar
  27. [27]
    Ö. Açışlı, S. Karaca, and A. Gürses, Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions, Appl. Clay Sci., 142(2017), p. 90.CrossRefGoogle Scholar
  28. [28]
    W. Yu, and H.Q Xie, A review on nanofluids: preparation, stability mechanisms, and applications, J. Nanomater., 2012(2012), art. No. 435873.Google Scholar
  29. [29]
    T. Meißner, K. Oelschlägel, and A. Potthoff, Implications of the stability behavior of zinc oxide nanoparticles for toxicological studies, Int. Nano Lett., 4(2014), No. 3, art. No. 115.Google Scholar
  30. [30]
    F.L. Yuan, H. Peng, Y. Yin, Y. Chunlei, and H. Ryu, Preparation of zinc oxide nanoparticles coated with homogeneous Al2O3 layer, Mater. Sci. Eng. B, 122(2005), No. 1, p. 55.CrossRefGoogle Scholar
  31. [31]
    R. Marsalek, Particle size and zeta potential of ZnO, APC-BEE Proc., 9(2014), p. 13.CrossRefGoogle Scholar
  32. [32]
    P. Yuan, P.D. Southon, Z.W. Liu, M.E.R. Green, J.M. Hook, S.J. Antill, and C.J. Kepert, Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane, J. Phys. Chem. C, 112(2008), No. 40, p. 15742.CrossRefGoogle Scholar
  33. [33]
    D. Gültekin, M. Alaf, and H. Akbulut, Synthesis and characterization of ZnO nanopowders and ZnO-CNT nanocomposites prepared by chemical precipitation route, Acta Phys. Pol. A, 123(2013), No. 2, p. 274.CrossRefGoogle Scholar
  34. [34]
    J. Sharma, M. Vashishtha, and D.O. Shah, Crystallite size dependence on structural parameters and photocatalytic activity of microemulsion mediated synthesized ZnO nanoparticles annealed at different temperatures, Global J. Sci. Front. Res. B, 14(2014), No. 5, p. 19.Google Scholar
  35. [35]
    J.T. Kloprogge, Characterisation of halloysite by spectroscopy, Dev. Clay Sci., 7(2016), p. 115.CrossRefGoogle Scholar
  36. [36]
    A.M. Pourrahimi, D. Liu, V. Ström, M.S. Hedenqvist, R.T. Olsson, and U.W. Gedde, Heat treatment of ZnO nanoparticles: new methods to achieve high-purity nanoparticles for high-voltage applications, J. Mater. Chem. A, 3(2015), No. 33, p. 17190.CrossRefGoogle Scholar
  37. [37]
    B.C. Babu and S. Buddhudu, Emission spectra of Tb3+: Zn2SiO4 and Eu3+: Zn2SiO4 sol-gel powder phosphors, J. Spectrocs. Dyn., 4(2014), No. 5, p. 1.Google Scholar
  38. [38]
    S. Yedurkar, C. Maurya, and P. Mahanwar, Biosynthesis of zinc oxide nanoparticles using Ixora Coccinea leaf extract—A green approach, J. Synth. Theory Appl., 5(2016), p. 1.Google Scholar
  39. [39]
    H. Sabahi, M. Khorami, A.H. Rezayan, Y. Jafari, and M.H. Karami, Surface functionalization of halloysite nanotubes via curcumin inclusion, Colloids Surf. A, 538(2018), p. 834.CrossRefGoogle Scholar
  40. [40]
    L. Tzounis, S. Herlekar, A. Tzounis, N.D. Charisiou, M. Goula, and M. Stamm, Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films, J. Nanomater., 2017(2017), art No. 3852310.Google Scholar
  41. [41]
    A.H. Moharram, S.A. Mansour, M.A. Hussein, and M. Rashad, Direct precipitation and characterization of ZnO nanoparticles, J. Nanomater., 2014(2014), art. No. 716210.Google Scholar
  42. [42]
    M. Maruthupandy, M. Anand, G. Maduraiveeran, S. Suresh, A.S.H. Beevi, and R.J. Priya, Investigation on the electrical conductivity of ZnO nanoparticles-decorated bacterial nanowires, Adv. Nat. Sci.: Nanosci. Nanotechnol., 7(2016), No. 4, art. No. 045011.Google Scholar
  43. [43]
    Z.C. Shen, H.J. Zhou, H.Y. Chen, H. Xu, C.H. Feng, and X.H. Zhou, Synthesis of nano-zinc oxide loaded on mesoporous silica by coordination effect and its photocatalytic degradation property of methyl orange, Nanomaterials, 8(2018), No. 5, art. No. 317.Google Scholar
  44. [44]
    M.S. Ghamsari, S. Alamdari, W. Han, and H.H. Park, Impact of nanostructured thin ZnO film in ultraviolet protection, Int. J. Nanomed., 12(2017), p. 207.CrossRefGoogle Scholar
  45. [45]
    N. Kiomarsipour, R.S. Razavi, K. Ghani, and M. Kioumarsipour, Evaluation of shape and size effects on optical properties of ZnO pigment, Appl. Surf. Sci., 270(2013), p. 33.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and Mineral Resources Engineering, Engineering CampusUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations