Advertisement

Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites

  • Chen-yang Huang
  • Shui-ping HuEmail author
  • Kai Chen
Article

Abstract

To study the influence of rolling on the interfaces and mechanical performance of graphene-reinforced Al-matrix composites, a rolling method was used to process them. Using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, and tensile testing, this study analyzed the micromorphology, interfaces, and mechanical performance of the composites before and after rolling. The experimental results demonstrates that the composites after hot rolling has uniform structures with strong interfacial bonding. With an increase in rolling temperature, the tensile strength and elastic modulus of the composites gradually increase. However, when the rolling temperature is higher than 500°C, granular and rod-like Al4C3 phases are observed at the interfaces and the mechanical performance of the composites is degraded. When the rolling temperature is 480°C, the composites show the optimal comprehensive mechanical performance, with a tensile strength and elastic modulus of 403.3 MPa and 77.6 GPa, respectively, which represent increases of 31.6% and 36.9%, respectively, compared with the corresponding values prior to rolling.

Keywords

rolling graphene composite interface mechanical performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgement

The work was financially supported by the National Key Development Program of China for the “13th Five-Year Plan” (No. 2016YFB0700300).

References

  1. [1]
    D. Zhang, G.D. Zhang, and Z.Q. Li, The current state and trend of metal matrix composites, Mater. China, 29(2010), No. 4, p. 1.Google Scholar
  2. [2]
    J. Joel and M.A. Xavior, Aluminium alloy composites and its machinability studies; A review, Mater. Today Proc., 5(2018), No. 5, p. 13556.CrossRefGoogle Scholar
  3. [3]
    M.K. Surappa, Aluminium matrix composites: Challenges and opportunities, Sadhana, 28(2003), No. 1–2, p. 319.CrossRefGoogle Scholar
  4. [4]
    I.A. Ibrahim, F.A. Mohamed, and E.J. Lavernia, Particulate reinforced metal matrix composites—a review, J. Mater. Sci., 26(1991), No. 5, p. 1137.CrossRefGoogle Scholar
  5. [5]
    R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, and A.K. Geim, Fine structure constant defines visual transparency of graphene, Science, 320(2008), No. 5881, p. 1308.CrossRefGoogle Scholar
  6. [6]
    A.K. Geim, Graphene: Status and prospects, Science, 324(2009), No. 5934, p. 1530.CrossRefGoogle Scholar
  7. [7]
    R.F. Service, Carbon sheets an atom thick give rise to graphene dreams, Science, 324(2009), No. 5929, p. 875.CrossRefGoogle Scholar
  8. [8]
    C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(2008), No. 5887, p. 385.CrossRefGoogle Scholar
  9. [9]
    R.T. Weitz and A. Yacoby, Nanomaterials: graphene rests easy, Nat. Nanotechnol., 5(2010), No. 10, p. 699.CrossRefGoogle Scholar
  10. [10]
    A.A. Balandin, S. Ghosh, W.Z. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene, Nano. Lett., 8(2008), No. 3, p. 902.CrossRefGoogle Scholar
  11. [11]
    M.F.L.D. Volder, S.H. Tawfick, R.H. Baughman, and A.J. Hart, Carbon nanotubes: present and future commercial applications, Science, 339(2013), No. 6119, p. 535.CrossRefGoogle Scholar
  12. [12]
    M.A. Rafiee, J. Rafiee, Z. Wang, H.H. Song, Z.Z. Yu, and N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS Nano, 3(2009), No. 12, p. 3884.CrossRefGoogle Scholar
  13. [13]
    A. Bisht, M. Srivastava, R.M. Kumar, I. Lahiri, and D. Lahiri, Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering, Mater. Sci. Eng. A, 695(2017), p. 20.CrossRefGoogle Scholar
  14. [14]
    X. Zeng, J. Teng, J.G. Yu, A.S. Tan, D.F. Fu, and H. Zhang, Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy, Int. J. Miner. Metall. Mater, 25(2018), No. 1, p. 102.CrossRefGoogle Scholar
  15. [15]
    S.E. Shin, H.J. Choi, J.H. Shin, and D.H. Bae, Strengthening behavior of few-layered graphene/aluminum composites, Carbon, 82(2015), p. 143.CrossRefGoogle Scholar
  16. [16]
    W.M. Tian, S.M. Li, B. Wang, X. Chen, J.H. Liu, and M. Yu, Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 723.CrossRefGoogle Scholar
  17. [17]
    G.H. Wu, L.T. Jiang, G.Q. Chen, and Q. Zhang, Research progress on the control of interfacial reactions in metal matrix composites, Mater. China, 31(2012), No. 7, p. 51.Google Scholar
  18. [18]
    T.P.D. Rajan, R.M. Pillai, and B.C. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites, J. Mater. Sci., 33(1998), No. 14, p. 3491.CrossRefGoogle Scholar
  19. [19]
    J.L. Lin, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He, J.Z. Chen, S.Q. Wang, X.Y. Zhang, and S.L. Dai, Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling, Mater. Sci. Eng. A, 626(2015), p. 400.CrossRefGoogle Scholar
  20. [20]
    R. Pérez-Bustamante, F. Pérez-Bustamante, I. Estrada-Guel, L. Licea-Jiménez, M. Miki-Yoshida, and R. Martínez-Sánchez, Effect of milling time and CNT concentration on hardness of CNT/Al2024 composites produced by mechanical alloying, Mater Charact., 75(1970), p. 13.CrossRefGoogle Scholar
  21. [21]
    G. Li and B.W. Xiong, Effects of graphene content on microstructures and tensile property of graphene-nanosheets / aluminum composites, J. Alloys. Compd., 697(2017), p. 31.CrossRefGoogle Scholar
  22. [22]
    S.E. Shin, Y.J. Ko, and D.H. Bae, Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures, Composites. Part. B, 106(2016), p. 66.CrossRefGoogle Scholar
  23. [23]
    J.Y. Wang, Z.Q. Li, G.L. Fan, H.H. Pan, Z.X. Chen, and D. Zhang, Reinforcement with graphene nanosheets in aluminum matrix composites, Scr. Mater., 66(2012), No. 8. p. 594.CrossRefGoogle Scholar
  24. [24]
    A. Radha and K.R. Vijayakumar, An investigation of mechanical and wear properties of AA6061 reinforced with silicon carbide and graphene nano particles-particulate composites, Mater. Today: Proc., 3(2016), No. 6, p. 2247.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Engineering TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations