Effect of Ni addition on microstructure and mechanical properties of Al–Mg–Si–Cu–Zn alloys with a high Mg/Si ratio

  • Gao-jie Li
  • Ming-xing GuoEmail author
  • Yu Wang
  • Cai-hui Zheng
  • Ji-shan Zhang
  • Lin-zhong Zhuang


The effect of adding 0.03wt% Ni on the microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys was systematically studied. The results reveal that the number density of spherical Fe-rich phases within grains increases with the addition of Ni, accompanied by the formation of Q (Al3Mg9Si7Cu2) precipitates around the spherical Fe-rich phases. Additionally, Ni addition is beneficial to reducing the grain size in the as-cast state. During the homogenization process, Q phases could be completely dissolved and the grain size could remain basically unchanged. However, compared with the Ni-free alloy, the Fe-rich phase in the Ni-containing alloy is more likely to undergo the phase transformation and further form more spherical particles during homogenization treatment. After thermomechanical processing, the distribution of Fe-rich phases in the Ni-containing alloy was further greatly improved and directly resulted in a greater formability than that of the Ni-free alloy. Accordingly, a reasonable Ni addition positively affected the microstructure and formability of the alloys.


Al-Mg-Si-Cu-Zn alloy Ni addition Fe-rich phase phase transformation formability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300801), the National Natural Science Foundation of China (Nos. 51871029, 51571023, and 51301016), Beijing Natural Science Foundation (No. 2172038), and Beijing Laboratory of Metallic Materials and Processing for Modern Transportation (No. FRF-SD-B-005B). The China Scholarship Council is also gratefully acknowledged for financial support to M.X. Guo.


  1. [1]
    J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., 61(2013), No. 3, p. 818.CrossRefGoogle Scholar
  2. [2]
    M.X. Guo, YD. Zhang, G.J. Li, S.B. Jin, G. Sha, J.S. Zhang, L.Z. Zhuang, and E.J. Lavernia, Solute clustering in Al-Mg-Si-Cu-(Zn) alloys during aging, J. Alloys Compd., 774(2019), p. 347.CrossRefGoogle Scholar
  3. [3]
    M.X. Guo, G. Sha, L.Y. Cao, W.Q. Liu, J.S. Zhang, and L.Z. Zhuang, Enhanced bake-hardening response of an Al-Mg-Si-Cu alloy with Zn addition, Mater. Chem. Phys., 162(2015), p. 15.CrossRefGoogle Scholar
  4. [4]
    X.F. Wang, M.X. Guo, Y. Zhang, H. Xing, Y. Li, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, The dependence of microstructure, texture evolution and mechanical properties of Al-Mg-Si-Cu alloy sheet on final cold rolling deformation, J. Alloys Compd., 657(2016), p. 906.CrossRefGoogle Scholar
  5. [5]
    M.H. Farshidi, M. Rifai, and H. Miyamoto, Microstructure evolution of a recycled Al-Fe-Si-Cu alloy processed by tube channel pressing, Int. J. Miner. Metall. Mater., 25(2018), No. 10, p. 1166.CrossRefGoogle Scholar
  6. [6]
    A.I. Taub, P.E. Krajewski, A.A. Luo, and J.N. Owens, The evolution of technology for materials processing over the last 50 years: The automotive example, JOM, 59(2007), No. 2, p. 48.CrossRefGoogle Scholar
  7. [7]
    R.P. Garrett, J. Lin, and T.A. Dean, An investigation of the effects of solution heat treatment on mechanical properties for AA 6xxx alloys: experimentation and modelling, Int. J. Plast., 21(2005), No. 8, p. 1640.CrossRefGoogle Scholar
  8. [8]
    A. Cuniberti, A. Tolley, M.V.C. Riglos, and R. Giovachini, Influence of natural aging on the precipitation hardening of an AlMgSi alloy, Mater. Sci. Eng. A, 527(2010), No. 20, p. 5307.CrossRefGoogle Scholar
  9. [9]
    M.X. Guo, G.J. Li, Y.D. Zhang, G. Sha, J.S. Zhang, L.Z. Zhuang, and E.J. Lavernia, Influence of Zn on the distribution and composition of heterogeneous solute-rich features in peak aged Al-Mg-Si-Cu alloys, Scr. Mater., 159(2019), p. 5.CrossRefGoogle Scholar
  10. [10]
    S. Koch and H. Antrekowitsch, Alloying behaviour of Cu, Mg and Mn in lead-free Al-Cu based alloys intended for free machining, BHM Berg- Huttenmann. Monatsh., 156(2011), No. 1, p. 22.CrossRefGoogle Scholar
  11. [11]
    T. Lu, Y. Pan, J.L. Wu, S.W. Tao, and Y. Chen, Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 405.CrossRefGoogle Scholar
  12. [12]
    Y. Meng, J.Z. Cui, Z.H. Zhao, and Y.B. Zuo, Effect of vanadium on the microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr-Ti alloy of 6XXX series, J. Alloys Compd., 573(2013), p. 102.CrossRefGoogle Scholar
  13. [13]
    Y. Meng, J.Z. Cui, Z.H. Zhao, and L.Z. He, Effect of Zr on microstructures and mechanical properties of an Al-Mg-Si-Cu-Cr alloy prepared by low frequency electromagnetic casting, Mater. Charact., 92(2014), No. 6, p. 138.CrossRefGoogle Scholar
  14. [14]
    L.Z. He, Y.H. Cao, Y.Z. Zhou, and J.Z. Cui, Effects of Ag addition on the microstructures and properties of Al-Mg-Si-Cu alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 62.CrossRefGoogle Scholar
  15. [15]
    S. Haro-Rodríguez, R.E. Goytia-Reyes, D.K. Dwivedi, V.H. Baltazar-Hernández, H. Flores-Zúñiga, and M.J. Pérez-López, On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al-Si-Mg alloy, Mater. Des., 32(2011), No. 4, p. 1865.CrossRefGoogle Scholar
  16. [16]
    Q. Chen, Q.L. Pan, Y Wang, Z.Y Zhang, J. Zhou, and C. Liu, Microstructure and mechanical properties of Al-5.8Mg-Mn-Sc-Zr alloy after annealing treatment, J. Cent. South Univ., 19(2012), No. 7, p. 1785.CrossRefGoogle Scholar
  17. [17]
    X. Lu, L.H. Zhao, L.P. Zhu, B. Zhang, and X.H. Qu, High-temperature mechanical properties and deformation behavior of high Nb containing TiAl alloys fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 19(2012), No. 4, p. 354.CrossRefGoogle Scholar
  18. [18]
    T. Liu, C.N. He, G. Li, X. Meng, C.S. Shi, and N.Q. Zhao, Microstructural evolution in Al-Zn-Mg-Cu-Sc-Zr alloys during short-time homogenization, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 516.CrossRefGoogle Scholar
  19. [19]
    H.Z. Li, X.P. Liang, F.F. Li, F.F. Guo, Z. Li, and X.M. Zhang, Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy, Trans. Nonferrous Met. Soc. China, 17(2007), No. 6, p. 1194.CrossRefGoogle Scholar
  20. [20]
    M. Kadi-Hanifi and K. Tirsatine, Influence of Cd and Sn on the kinetics of the GP zones formation in Al-Zn-Mg, Mater. Sci. Forum, 331(2000), p. 1067.Google Scholar
  21. [21]
    R.N. Wilson and P.J.E. Forsyth, Effects of Additions of 1% Iron and 1% Nickel and of Pre-strain on the Age-hardening of an Aluminium-2.5%Copper-1.2%Magnesium Alloy, Ministry of Aviation; Royal Aircraft Establishment; RAE Farnborough, 1964.Google Scholar
  22. [22]
    J. Hernandez-Sandoval, G.H. Garza-Elizondo, A.M. Samuel, S. Valtiierra, and F.H. Samuel, The ambient and high temperature deformation behavior of Al-Si-Cu-Mg alloy with minor Ti, Zr, Ni additions, Mater. Des., 58(2014), p. 89.CrossRefGoogle Scholar
  23. [23]
    X.Y. Lv, E.J. Guo, Z.H. Li, and G.J. Wang, Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization, Rare Met., 30(2011), No. 6, p. 664.CrossRefGoogle Scholar
  24. [24]
    M.H. Jacobs, The structure of metastable precipitates formed during ageing of an Al-Mg-Si alloy, Philos. Mag. A, 26(1972), No. 1, p. 1.CrossRefGoogle Scholar
  25. [25]
    G.C. Weatherly, A. Perovic, D.D. Perovic, N.K. Mukhopadhyay, and D.J. Lloyd, The precipitation of the Q phase in an AA6111 Alloy, Metall. Mater. Trans. A, 32(2001), No. 2, p. 213.CrossRefGoogle Scholar
  26. [26]
    P. Orozco-González, M. Castro-Román, A.I. Martínez, M. Herrera-Trejo, A.A. López, and J. Quispe-Marcatoma, Precipitation of Fe-rich intermetallic phases in liquid Al-13.58Si-11.59Fe-1.19Mn alloy, Intermetallics, 18(2010), No. 8, p. 1617.CrossRefGoogle Scholar
  27. [27]
    Z.B. Xing, Z.R. Nie, X.L. Ji, X.D. Wang, and J.X. Zou, Effect of trace element erbium and manganese on microstructure and properties of Al-Mg alloy, Rare Met. Mater. Eng., 35(2006), No. 12, p. 1979.Google Scholar
  28. [28]
    D.M. Herlach, K. Eckler, A. Karma, and M. Schwarz, Grain refinement through fragmentation of dendrites in undercooled melts, Mater. Sci. Eng. A, 304–306(2001), p. 20.CrossRefGoogle Scholar
  29. [29]
    H. Zhang, N.P. Jin, and J.H. Chen, Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature, Trans. Nonferrous Met. Soc. China, 21(2011), No. 3, p. 437.CrossRefGoogle Scholar
  30. [30]
    Z.G. Chen, Z.Q. Zheng, and S.P. Ringer, Effect of small addition of Sc on the microstructural evolution in Al-15Ag alloy, J. Mater. Sci. Technol., 21(2005), No. 5, p. 630.CrossRefGoogle Scholar
  31. [31]
    Z.W. Chen, Q.Y Fan, and K. Zhao, Microstructure and microhardness of nanostructured Al-4.6Cu-Mn alloy ribbons, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 860.CrossRefGoogle Scholar
  32. [32]
    Y.F. Liu, W. Tian, and Y Sun, Research progress of microalloying of Al-Zn-Mg-Cu aluminum alloy, Nonferrous Met. Mater. Eng., 39(2018), No. 1, p. 38.Google Scholar
  33. [33]
    D.L. Gilmore and E.A. Starke Jr, Trace element effects on precipitation processes and mechanical properties in an Al-Cu-Li alloy, Metall. Mater. Trans. A, 28(1997), No. 7, p. 1399.CrossRefGoogle Scholar
  34. [34]
    L. Lodgaard and N. Ryum, Precipitation of dispersoids containing Mn and/or Cr in Al-Mg-Si alloys, Mater. Sci. Eng. A, 283(2000), No. 1–2, p. 144.CrossRefGoogle Scholar
  35. [35]
    C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system, Metall. Mater. Trans. A, 36(2005), No. 3, p. 691.CrossRefGoogle Scholar
  36. [36]
    Z.G. Chen, Z.Q. Zheng, and Z.X. Wang, Effect of lithium on the aging characteristics and microstructure of Al-4Mg-1.5Cu-0.4Ag alloys, J. Mater. Sci., 39(2004), No. 6, p. 2253.CrossRefGoogle Scholar
  37. [37]
    Z.M. Yin, Q.L. Pan, Y.H. Zhang, and F. Jiang, Effect of minor Sc and Zr on the microstructure and mechanical properties of Al-Mg based alloys, Mater. Sci. Eng. A, 280(2000), No. 1, p. 151.CrossRefGoogle Scholar
  38. [38]
    V. Ocenasek and M. Slamova, Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys, Mater. Charact., 47(2001), No. 2, p. 157.CrossRefGoogle Scholar
  39. [39]
    N.C.W. Kuijpers, F.J. Vermolen, K. Vuik, and S. van der Zwaag, A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al-Mg-Si alloys, Mater. Trans., 44(2003), No. 7, p. 1448.CrossRefGoogle Scholar
  40. [40]
    Y.J. Li and L. Arnberg, A eutectoid phase transformation for the primary intermetallic particle from Alm(Fe, Mn) to Al3(Fe, Mn) in AA5182 alloy, Acta Mater., 52(2004), No. 10, p. 2945.CrossRefGoogle Scholar
  41. [41]
    Y.H. Cai, C. Wang, and J.S. Zhang, Microstructural characteristics and aging response of Zn-containing Al-Mg-Si-Cu alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 659.CrossRefGoogle Scholar
  42. [42]
    L.Y. Cao, M.X. Guo, H. Cui, Y.H. Cai, Q.X. Zhang, X.Q. Hu, and J.S. Zhang, Study on the kinetics of phase transformation β → α in the homogeneous heat treatment of Al-Mg-Si series alloys, Acta Metall. Sin., 49(2013), No. 4, p. 428.CrossRefGoogle Scholar
  43. [43]
    W.B. Lievers, A.K. Pilkey, and D.J. Lloyd, The influence of iron content on the bendability of AA6111 sheet, Mater. Sci. Eng. A, 361(2003), No. 1–2, p. 312.CrossRefGoogle Scholar
  44. [44]
    L. Zhuang, J. Bottema, P. Kaasenbrood, W.S. Miller, and P. De Smet, The effect of small particles on annealed grain size and texture of Al-Mg-Si alloys, Mater. Sci. Forum, 217–222(1996), p. 487.CrossRefGoogle Scholar
  45. [45]
    M.X. Guo, J. Zhu, Y. Zhang, G.J. Li, T. Lin, J.S. Zhang, and L.Z. Zhuang, The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability, Mater. Charact., 132(2017), p. 248.CrossRefGoogle Scholar
  46. [46]
    P.C. Ma, D. Zhang, L.Z. Zhuang, and J.S. Zhang, Effect of alloying elements and processing parameters on the Portevin-Le Chatelier effect of Al-Mg alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 2, p. 175.CrossRefGoogle Scholar
  47. [47]
    O. Engler, Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis, Mater. Sci. Technol., 12(1996), No. 10, p. 859.CrossRefGoogle Scholar
  48. [48]
    J.D. Robson, D.T. Henry, and B. Davis, Particle effects on re-crystallization in magnesium-manganese alloys: Particle-stimulated nucleation, Acta Mater., 57(2009), No. 9, p. 2739.CrossRefGoogle Scholar
  49. [49]
    X.F. Wang, M.X. Guo, J.R. Luo, J. Zhu, J.S. Zhang, and L.Z. Zhuang, Effect of Zn on microstructure, texture and mechanical properties of Al-Mg-Si-Cu alloys with a medium number of Fe-rich phase particles, Mater. Charact., 134(2017), p. 123.CrossRefGoogle Scholar
  50. [50]
    G.J. Li, M.X. Guo, J.Q. Du, J.S. Zhang, L.Z. Zhuang, and E.J. Lavernia, Influence of precipitate-assisted nucleation on the microstructure and mechanical properties of Al-Mg-Si-Cu-Zn alloys, Philos. Mag., 99(2019), No. 11, p. 1335.CrossRefGoogle Scholar
  51. [51]
    H.E. Vatne, O. Engler, and E. Nes, Influence of particles on recrystallisation textures and microstructures of aluminium alloy 3103, Mater. Sci. Technol, 13(1997), No. 2, p. 93.CrossRefGoogle Scholar
  52. [52]
    P.D. Wu, S.R. MacEwen, D.J. Lloyd, and K.W. Neale, Effect of cube texture on sheet metal formability, Mater. Sci. Eng. A, 364(2004), No. 1–2, p. 182.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Gao-jie Li
    • 1
  • Ming-xing Guo
    • 1
    Email author
  • Yu Wang
    • 1
  • Cai-hui Zheng
    • 1
  • Ji-shan Zhang
    • 1
  • Lin-zhong Zhuang
    • 1
  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations