Advertisement

Electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O system for Dy–Cu intermediate alloy production

  • Shu-mei Chen
  • Chun-fa LiaoEmail author
  • Jue-yuan Lin
  • Bo-qing Cai
  • Xu Wang
  • Yun-fen Jiao
Article
  • 1 Downloads

Abstract

Dy–Cu intermediate alloys have shown substantial potential in the field of magnetostrictive and magnetic refrigerant materials. Therefore, this study focused on investigating the electrical conductivity of molten-salt systems for the preparation of Dy–Cu alloys and on optimizing the corresponding operating parameters. The electrical conductivity of molten LiF–DyF3–Dy2O3–Cu2O systems was measured from 910 to 1030°C using the continuously varying cell constant method. The dependencies of the LiF–DyF3–Dy2O3–Cu2O system conductivity on the melt composition and temperature were examined herein. The optimal operating conditions for Dy–Cu alloy production were determined via analyses of the electrical conductivity and activation energies for conductance, which were calculated using the Arrhenius equation. The conductivity of the molten system regularly increases with increasing temperature and decreases with increasing concentration of Dy2O3 or Cu2O or both. The activation energy Eκ of the LiF–DyF3–Dy2O3 and LiF–DyF3–Cu2O molten-salt systems increases with increasing Dy2O3 or Cu2O content. The regression functions of conductance as a function of temperature (t) and the addition of Dy2O3 (W(Dy2O3)) and Cu2O (W(Cu2O)) can be expressed as κ = −2.08435 + 0.0068t − 0.18929W(Dy2O3) −0.07918W(Cu2O). The optimal electrolysis conditions for preparing the Dy–Cu alloy in LiF–DyF3–Dy2O3–Cu2O molten salt are determined to be 2.0wt% > W(Dy2O3) + W(Cu2O) > 3.0wt% and W(Dy2O3): W(Cu2O) = 1:2 at 970 to 1000 °C.

Keywords

electrical conductivity molten salt Dy–Cu alloy dysprosium oxide cuprous oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NOs. 5167041092 and 51564015) and the Natural Science Foundation of Jiangxi Province (No. 20161BAB206142).

References

  1. [1]
    S.M. Pang, Z.Q. Wang, L. Zhou, B.Y. Chen, L.H. Xu, B. Zhao, S.H. Yan, and Z.A. Li, Study on preparation of high-purified terbium and dysprosium metals used for rare earth giant magnetostrictive materials, Chin. Rare Earths, 29(2008), No. 6, p. 31.Google Scholar
  2. [2]
    F.D. Liu, Y. Su, Y.Q. Chen, Y.F. Xiong, and X.F. Yi, Investigation and development of NdFeB magnets with excellent magnetic properties and stability of temperature, Met. Funct. Mater., 17(2010), No. 3, p. 5.Google Scholar
  3. [3]
    L.Q. Yu, X.G. Cui, W. Luo, and M. Yan, Influence of Cu and Gd on thermal stability and magnetic properties of Nd(DyAl)FeB magnets, J. Zhejiang Univ. Eng. Sci., 39(2005), No. 8, p. 1251.Google Scholar
  4. [4]
    S.M. Pang, S.H. Yan, Z.A. Li, D.H. Chen, L.H. Xu, and B. Zhao, Development on molten salt electrolytic methods and technology for preparing rare earth metals and alloys in China, Chin. J. Rare Met., 35(2011), No. 3, p. 440.Google Scholar
  5. [5]
    G.K. Liu, Y.X. Tong, H.C. Hong, S.Y. Chen, and L. Gan, Studies on the preparation of Dy-Cu alloy in chloride melt by molten salt electrolysis, Acta Metall. Sinica, 32(1996), No. 12, p. 1252.Google Scholar
  6. [6]
    A. Saïla, M. Gibilaro, L. Massot, P. Chamelot, P. Taxil, and A.M. Affoune, Electrochemical behavior of dysprosium(III) in LiF-CaF2 on Mo, Ni and Cu electrodes, J. Electroanal. Chem., 642(2010), No. 2, p. 150.CrossRefGoogle Scholar
  7. [7]
    H. Konishi, H. Ono, E. Takeuchi, T. Nohira, and T. Oishi, Electrochemical formation of RE-Cu (RE = Dy, Nd) alloys in a molten LiCl-KCl system, ECS Trans., 53(2013), No. 11, p. 37.CrossRefGoogle Scholar
  8. [8]
    K.S. Mohandas, N. Sanil, and P. Rodriguez, Development of a high temperature conductance cell and electrical conductivity measurements of MAlCl4 (M = Li, Na and K) melts, Miner. Process. Extr. Metall., 115(2006), No. 1, p. 25.CrossRefGoogle Scholar
  9. [9]
    H.M. Kan, Z.W. Wang, Y.G. Ban, Z.N. Shi, and Z.X. Qiu, Electrical conductivity of Na3AlF6-AlF3-Al2O3-CaF2-LiF(NaCl) system electrolyte, Trans. Nonferrous Met. Soc. China, 17(2007), No. 1, p. 181.CrossRefGoogle Scholar
  10. [10]
    L.Y. Chen, Research on Physical and Chemical Properties of LiF-NdF 3-Nd 2 O 3 Molten Salt System [Dissertation], East China University of Science and Technology, Shanghai, 2015, p. 2.Google Scholar
  11. [11]
    X.J. Lv, S.Y. Chen, Z.L. Tian, Y.Q. Lai, and J. Li, Review on the physical-chemical properties of the Na3AlF6-K3AlF6-AlF3 molten salt system, Light Met., 2013, No. 8, p. 29.Google Scholar
  12. [12]
    V. Daněk, Physical and Chemical Analysis of Molten Electrolyte, B.L. Gao, X.W. Hu, Z.N. Shi, and Z.W. Wang, translated, Metallurgical Industry Press, Beijing, 2014, p. 54.Google Scholar
  13. [13]
    X.W. Hu, Z.W. Wang, B.L. Gao, and Z.N. Shi, Study on the electrical conductivity of NdF3-LiF-Nd2O3 system melts determined by CVCC technique, J. Northeastern Univ. Nat. Sci., 29(2008), No. 9, p. 1294.Google Scholar
  14. [14]
    Q.S. Wu, Electrical conductivity and neodymium solubility of Nd2O3-NdF3-LiF fusion salt system, Rare Met. Cem. Carbides, 34(2006), No. 1, p. 52.Google Scholar
  15. [15]
    C.F. Liao, H. Tang, X. Wang, L.S. Luo, and M.Z. Fang, Study on electrical conductivity of Na3AlF6-AlF3-LiF-MgF2-Al2O3-Nd2O3-CuO molten salt system, Rare Met. Cem. Carbides, 44(2016), No. 1, p. 60.Google Scholar
  16. [16]
    M. Bao, Z.W. Wang, B.L. Gao, Z.N. Shi, X.W. Hu, and J.Y. Yu, Electrical conductivity of NaF-AlF3-Al2O3-CaF2-ZrO2 molten salts, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3788.CrossRefGoogle Scholar
  17. [17]
    C.F. Liao, Y.F. Jiao, X. Wang, B.Q. Cai, Q.C. Sun, and T. Hao, Electrical conductivity optimization of the Na3AlF6-Al2O3-Sm2O3 molten salts system for Al-Sm intermediate binary alloy production, Int. J. Miner. Metall. Mater, 24(2017), No. 9, p. 1034.CrossRefGoogle Scholar
  18. [18]
    K. Grjotheim, R. Nikolic, and H.A. Øye, Electrical conductivities of binary and ternary melts between MgCl2, CaCl2, NaCl, and KCl, Acta Chem. Scand, 24(1970), No. 2, p. 489.CrossRefGoogle Scholar
  19. [19]
    R. Guo. Study of Al-Sc Alloy Prepared by Molten Salt Electrolysis Method [Dissertation], Northeastern University, Shenyang, 2009, p. 27.Google Scholar
  20. [20]
    X.F. He, Y.G. Li, and Z.H. Li, Research on conductivity of KCl-NaCl-NaF-SiO2 molten salt system, Hydrometall. China, 29(2010), No. 1, p. 12.Google Scholar
  21. [21]
    X. Guo, J. Sietsma, and Y.X. Yang, A critical evaluation of solubility of rare earth oxides in molten fluorides, [in] I.B.D. Lima, and W.L. Filho eds., Rare Earths Industry: Technological, Economic and Environmental Implications, Elsevier, 2015, p. 223–234.Google Scholar
  22. [22]
    B.L. Gao, F.G. Liu, Z.W. Wang, and Z.N. Shi, Study on electrical conductivity of the molten salts of KNO3-NaNO2-NaNO3 ternary system, J. Northeastern Univ. Nat. Sci., 31(2010), No. 5, p. 696.Google Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shu-mei Chen
    • 1
  • Chun-fa Liao
    • 1
    Email author
  • Jue-yuan Lin
    • 1
  • Bo-qing Cai
    • 1
  • Xu Wang
    • 1
  • Yun-fen Jiao
    • 1
  1. 1.Institute of Metallurgy and Chemical EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations