A study of interparticulate strain in a hot-extruded SiCp/2014 Al composite

  • Ying Hu
  • Qiu-bao Ou-yang
  • Lei Yao
  • Sheng Chen
  • Lan-ting ZhangEmail author


We report a correlative study of strain distribution and grain structure in the Al matrix of a hot-extruded SiC particulate-reinforced Al composite (SiCp/2014 A1). Finite element method (FEM) simulation and microstructure characterization indicate that the grain structure of the Al matrix is affected by the interparticulate strain distribution in the matrix during the process. Both electron-backscattered diffraction (EBSD) and selected-area electron diffraction (SAED) indicated localized misorientation in the Al matrix after hot extrusion. Scanning transmission electron microscopy (STEM) revealed fine and recrystallized grains adjacent to the SiC particulate and elongated grains between the particulates. This result is explained in terms of recrystallization under an interparticulate strain distribution during the hot extrusion process.


metal-matrix composites strain distribution recrystallization grain structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is financially supported by the National Basic Research Program of China (973) (No. 2012CB619600).


  1. [1]
    S.S. Li, Y.S. Su, Q.B. Ouyang, and D. Zhang, In-situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy, Mater. Lett., 167(2016), p. 118.CrossRefGoogle Scholar
  2. [2]
    J.M. Root, D.P. Field, and T.W. Nelson, Crystallographic texture in the friction-stir-welded metal matrix composite Al6061 with 10 vol pct Al2O3, Metall. Mater. Trans. A, 40(2009), No. 9, p. 2109.CrossRefGoogle Scholar
  3. [3]
    S.J. Hong, H.M. Kim, D. Huh, C. Suryanarayana, and B.S. Chun, Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites, Mater. Sci. Eng., A, 347(2003), No. 1–2, p. 198.CrossRefGoogle Scholar
  4. [4]
    Z. Xue, Y. Huang, and M. Li, Particle size effect in metalli materials: A study by the theory of mechanism-based strain gradient plasticity, Acta Mater., 50(2002), No. 1, p. 149.CrossRefGoogle Scholar
  5. [5]
    D. Mandal and S. Viswanathan, Effect of re-melting on particle distribution and interface formation in SiC reinforced 2124Al matrix composite, Mater. Charact., 86(2013), p. 21.CrossRefGoogle Scholar
  6. [6]
    D. Mandal and S. Viswanathan, Effect of heat treatment on microstructure and interface of SiC particle reinforced 2124 A1 matrix composite, Mater. Charact., 85(2013), p. 73.CrossRefGoogle Scholar
  7. [7]
    G. Liu, G.J. Zhang, R.H. Wang, W. Hu, J. Sun, and K.H. Chen, Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys, Acta Mater., 55(2007), No. 1, p. 273.CrossRefGoogle Scholar
  8. [8]
    R. Vogt, Z. Zhang, Y. Li, M. Bonds, N.D. Browning, E.J. Lavernia, and J.M. Schoenung, The absence of thermal expansion mismatch strengthening in nanostructured metal-matrix composites, Scripta Mater., 61(2009), No. 11, p. 1052.CrossRefGoogle Scholar
  9. [9]
    J.S. Robinson and W. Redington, The influence of alloy composition on residual stresses in heat treated aluminium alloys, Mater. Charact., 105(2015), p. 47.CrossRefGoogle Scholar
  10. [10]
    J.Y. Song, Q. Guo, Q.B. Ouyang, Y.S. Su, J. Zhang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, Influence of interfaces on the mechanical behavior of SiC particulate-reinforced Al-Zn-Mg-Cu composites, Mater. Sci. Eng. A, 644(2015), p. 79.CrossRefGoogle Scholar
  11. [11]
    Z.Z. Chen, Z.Q. Tan, G. Ji, G.L. Fan, D. Schryvers, Q.B. Ouyang, and Z.Q. Li, Effect of interface evolution on thermal conductivity of vacuum hot pressed SiC/Al composites, Adv. Eng. Mater., 17(2015), No. 7, p. 1077.CrossRefGoogle Scholar
  12. [12]
    S.Y. Wang, Q. Tang, D.J. Li, J.X. Zou, X.Q. Zeng, Q.B. Ouyang, and W.J. Ding, The hot workability of SiCp/2024 Al composite by stir casting, Mater. Manuf. Processes, 30(2015), No. 5, p. 624.CrossRefGoogle Scholar
  13. [13]
    A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Evaluation of mechanical properties of 1050-Al reinforced with SiC particles via accumulative roll bonding process, J. Compos. Mater., 53(2019), No. 2, p. 209.CrossRefGoogle Scholar
  14. [14]
    N.E. Mahallawy, A. Fathy, and M. Hassan, Evaluation of mechanical properties and microstructure of A1/Al-12%Si multilayer via warm accumulative roll bonding process, J. Compos. Mater., 2017.
  15. [15]
    N.E. Mahallawy, A. Fathy, W. Abdelaziem, and M. Hassan, Microstructure evolution and mechanical properties of A1/Al-12%Si multilayer processed by accumulative roll bonding (ARB), Mater. Sci. Eng., A, 647(2015), p. 127.CrossRefGoogle Scholar
  16. [16]
    A. Fathy, O. Elkady, and A. Abu-Oqail, Synthesis and characterization of Cu-ZrO2 nanocomposite produced by ther-mochemical process, J. Alloys Compd., 719(2017), p. 411.CrossRefGoogle Scholar
  17. [17]
    A. Fathy, Investigation on microstructure and properties of Cu-ZrO2 nanocomposites synthesized by in situ processing, Mater. Lett., 213(2018), p. 95.CrossRefGoogle Scholar
  18. [18]
    A. Fathy, A. Sadoun, and M. Abdelhameed, Effect of matrix/reinforcement particle size ratio (PSR) on the mechanical properties of extruded Al-SiC composites, Int. J. Adv. Manuf. Technol., 73(2014), No. 5–8, p. 1049.CrossRefGoogle Scholar
  19. [19]
    O. El-Kady and A. Fathy, Effect of SiC particle size on the physical and mechanical properties of extruded Al matrix nanocomposites, Mater. Des., 54(2014), p. 348.CrossRefGoogle Scholar
  20. [20]
    A. Wagih, A. Fathy, D. Ibrahim, O. Elkady, and M. Hassan, Experimental investigation on strengthening mechanisms in Al-SiC nanocomposites and 3D FE simulation of Vickers indentation, J. Alloys Compd., 752(2018), p. 137.CrossRefGoogle Scholar
  21. [21]
    A. Wagih and A. Fathy, Improving compressibility and thermal properties of Al-Al2O3 nanocomposites using Mg particles, J. Mater. Sci., 53(2018), No. 16, p. 11393.CrossRefGoogle Scholar
  22. [22]
    A. Fathy and O. El-Kady, Thermal expansion and thermal conductivity characteristics of Cu-Al2O3 nanocomposites, Mater. Des., 46(2013), p. 355.CrossRefGoogle Scholar
  23. [23]
    J. Zhang, Q.B. Ouyang, Q. Guo, Z.Q. Li, G.L. Fan, Y.S Su, L. Jiang, E.J. Lavernia, J.M. Schoenung, and D. Zhang, 3D microstructure-based finite element modeling of deformation and fracture of SiCp/Al composites, Compos. Sci. Technol., 123(2016), p. 1.CrossRefGoogle Scholar
  24. [24]
    H. Jiang, Z.G. Fan, and C.Y. Xie, 3D finite element simulation of deformation behavior of CP-Ti and working load during multi-pass equal channel angular extrusion, Mater. Sci. Eng. A, 485(2008), No. 1–2, p. 409.CrossRefGoogle Scholar
  25. [25]
    H. Jiang, Z.G. Fan, and C.Y. Xie, Finite element analysis of temperature rise in CP-Ti during equal channel angular extrusion, Mater. Sci. Eng. A, 513–514(2009), p. 109.CrossRefGoogle Scholar
  26. [26]
    V. Ocelík, J.A. Vreeling, and J.T.M. De Hosson, EBSP study of reaction zone in SiC/Al metal matrix composite prepared by laser melt injection, J. Mater. Sci., 36(2001), No. 20, p. 4845.CrossRefGoogle Scholar
  27. [27]
    M. Kamaya, Assessment of local deformation using EBSD: Quantification of local damage at grain boundaries, Mater. Charact., 66(2012), p. 56.CrossRefGoogle Scholar
  28. [28]
    J. Guo, S. Amira, P. Gougeon, and X.G. Chen, Effect of the surface preparation techniques on the EBSD analysis of a friction stir welded AA1100-B4C metal matrix composite, Mater. Charact., 62(2011), No. 9, p. 865.CrossRefGoogle Scholar
  29. [29]
    Z.P. Luo, Y.G. Song, and S.Q. Zhang, A TEM study of the microstructure of SiCp/Al composite prepared by pressure less infiltration method, Scripta Mater., 45(2001), No. 10, p. 1183.CrossRefGoogle Scholar
  30. [30]
    W.L Zhang, J.X. Wang, F. Yang, Z.Q. Sun, and M.Y. Gu, Recrystallization kinetics of cold-rolled squeeze-cast Al/SiC/15w composites, J. Compos. Mater., 40(2006), No. 12, p. 1117.CrossRefGoogle Scholar
  31. [31]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon Press, Oxford, 2004, p. 451.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ying Hu
    • 1
    • 2
  • Qiu-bao Ou-yang
    • 1
    • 3
  • Lei Yao
    • 1
    • 2
  • Sheng Chen
    • 2
  • Lan-ting Zhang
    • 1
    • 4
    Email author
  1. 1.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Support Department of Research Institute (R&D Center)Baoshan Iron & Steel Co., Ltd.ShanghaiChina
  3. 3.State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiChina
  4. 4.Materials Genome Initiative CenterShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations