Fine-tuning the ductile-brittle transition temperature of Mg2Si intermetallic compound via Al doping

  • Ao Li
  • Xin-peng Zhao
  • Hai-you HuangEmail author
  • Yuan Ma
  • Lei Gao
  • Yan-jing Su
  • Ping Qian


Brittleness is a dominant issue that restricts potential applications of Mg2Si intermetallic compounds (IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg2Si-Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100°C. When the content of Al reached 6wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased.


Mg alloy intermetallic compound first-principles calculations mechanical properties ductile-brittle transition temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0700500) and the National Natural Science Foundation of China (No. 51574027).


  1. [1]
    D.W. Zhang, Z. Li, and H.B. Huang, New Mg2Si based alloy for automobile engine cylinder liner, J. Wuhan Univ. Technol. - Mater. Sci. Ed., 26(2011), No. 4, p. 797.CrossRefGoogle Scholar
  2. [2]
    B.L. Mordike and T. Ebert, Magnesium: Properties—applications—potential, Mater. Sci. Eng. A, 302(2001), No. 1, p. 37.CrossRefGoogle Scholar
  3. [3]
    M. Riffel and J. Schilz, Mechanical alloying of Mg2Si, Scripta Metall. Mater, 32(1995), No. 12, p. 1951.CrossRefGoogle Scholar
  4. [4]
    M. Yoshinaga, T. Iida, M. Noda, T. Endo, and Y. Takanashi, Bulk crystal growth of Mg2Si by the vertical Bridgman method, Thin Solid Films, 461(2004), No. 1, p. 86.CrossRefGoogle Scholar
  5. [5]
    H. Tatsuoka, N. Takagi, S. Okaya, Y. Sato, T. Inaba, T. Ohishi, A. Yamamoto, T. Matsuyama, and H. Kuwabara, Microstructures of semiconducting silicide layers grown by novel growth techniques, Thin Solid Films, 461(2004), No. 1, p. 57.CrossRefGoogle Scholar
  6. [6]
    K.K.A. Kumar, A. Viswanath, U.T.S. Pillai, B.C. Pai, and M. Chakraborty, Changes in solidification morphology of Mg-Si alloys by Ca additions, Trans. Indian Inst. Met., 65(2012), No. 6, p. 695.CrossRefGoogle Scholar
  7. [7]
    S. Battiston, S. Fiameni, M. Saleemi, S. Boldrini, A. Famengo, F. Agresti, M. Stingaciu, M.S. Toprak, M. Fabrizio, and S. Barison, Synthesis and characterization of Al-doped Mg2Si thermoelectric materials, J. Electron. Mater., 42(2013), No. 7, p. 1956.CrossRefGoogle Scholar
  8. [8]
    G.H. Li, H.S. Gill, and R.A. Varin, Magnesium silicide intermetallic alloys, Metall. Trans. A, 24(1993), No. 11, p. 2383.CrossRefGoogle Scholar
  9. [9]
    Y.L. Yue, Y.S. Gong, H.T. Wu, C.B. Wang, and L.M. Zhang, Fabrication and mechanical properties of TiC/TiAl composites, J. Wuhan Univ. Technol. - Mater. Sci. Ed., 19(2004), No. 1, p. 1.CrossRefGoogle Scholar
  10. [10]
    X.H. Qu, B.Y. Huang, and C.M. Lei, Room temperature brittleness and improvement of TiAl orderd alloy, Rare Met., 17(1993), No. 4, p. 295.Google Scholar
  11. [11]
    S.Q. Chen, X.H. Qu, C.M. Lei, and B.Y. Huang, Room temperature mechanical properties of ordered TiAl+La alloys, Acta Metall. Sin., 30(1994), No. 1, p. 20.Google Scholar
  12. [12]
    K. Kaur and R. Kumar, Electronic and thermoelectric properties of Al doped Mg2Si material: DFT study, Mater. Today: Proc., 3(2016), No. 6, p. 1785.Google Scholar
  13. [13]
    N. Hirayama, T. Iida, H. Funashima, S. Morioka, M. Sakamoto, K. Nishio, Y. Kogo, Y. Takanashi, and N. Hamada, First-principles study on structural and thermoelectric properties of Al- and Sb-doped Mg2Si, J. Electron. Mater., 44(2015), No. 6, p. 1656.CrossRefGoogle Scholar
  14. [14]
    W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140(1965), No. 4A, p. A1133.CrossRefGoogle Scholar
  15. [15]
    G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B, 48(1993), No. 17, p. 13115.CrossRefGoogle Scholar
  16. [16]
    G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169.CrossRefGoogle Scholar
  17. [17]
    J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865.CrossRefGoogle Scholar
  18. [18]
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, and C. Fiolhais, Erratum: Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Phys. Rev. B, 48(1993), No. 7, p. 4978.CrossRefGoogle Scholar
  19. [19]
    P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50(1994), No. 24, p. 17953.CrossRefGoogle Scholar
  20. [20]
    H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188.CrossRefGoogle Scholar
  21. [21]
    J. Tani and H. Kido, First-principles and experimental studies of impurity doping into Mg2Si, Intermetallics, 16(2008), No. 3, p. 418.CrossRefGoogle Scholar
  22. [22]
    W. Xiong, X.Y. Qin, M.G. Kong, and C. Li, Synthesis and properties of bulk nanocrystalline Mg2Si through ball-milling and reactive hot-pressing, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 987.CrossRefGoogle Scholar
  23. [23]
    C. Li, Y.P. Wu, H. Li, Y.Y. Wu, and X.F. Liu, Effect of Ni on eutectic structural evolution in hypereutectic Al-Mg2Si cast alloys, Mater. Sci. Eng. A, 528(2010), No. 2, p. 573.CrossRefGoogle Scholar
  24. [24]
    A. Viat, G. Guillonneau, S. Fouvry, G. Kermouche, S. Sao Joao, J. Wehrs, J. Michler, and J.F. Henne, Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures, Wear, 392–393(2017), p. 60.CrossRefGoogle Scholar
  25. [25]
    S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, London Edinburgh Dublin Philos. Mag. J. Sci., 45(1954), No. 367, p. 823.CrossRefGoogle Scholar
  26. [26]
    G.V. Sin’Ko and N. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp A1 crystals under pressure, J. Phys.: Condens. Matter, 14(2002), No. 29, p. 6989.Google Scholar
  27. [27]
    W. Voigt, Lehrbuch der Kristallphysik, Springer, Wiesbaden, 1966.CrossRefGoogle Scholar
  28. [28]
    A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech., 9(1929), p. 49.CrossRefGoogle Scholar
  29. [29]
    R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A, 65(1952), No. 5, p. 349.CrossRefGoogle Scholar
  30. [30]
    R. Hill, Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11(1963), No. 5, p. 357.CrossRefGoogle Scholar
  31. [31]
    R.D. Schmidt, E.D. Case, J. Giles, J.E. Ni, and T.P. Hogan, Room-temperature mechanical properties and slow crack growth behavior of Mg2Si thermoelectric materials, J. Electron. Mater., 41(2012), No. 6, p. 1210.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ao Li
    • 1
    • 2
  • Xin-peng Zhao
    • 1
    • 2
  • Hai-you Huang
    • 1
    • 2
    Email author
  • Yuan Ma
    • 1
    • 2
  • Lei Gao
    • 1
    • 2
  • Yan-jing Su
    • 1
    • 2
    • 3
  • Ping Qian
    • 3
    • 4
  1. 1.Institute for Advanced Materials and TechnologyUniversity of Science and Technology BeijingBeijingChina
  2. 2.Corrosion and Protection Center, Key Laboratory for Environmental Fracture of Ministry of EducationUniversity of Science and Technology BeijingBeijingChina
  3. 3.Beijing Advanced Innovation Center for Materials Genome EngineeringUniversity of Science and Technology BeijingBeijingChina
  4. 4.Department of PhysicsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations