Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells

  • Huan-yu Zhang
  • Rui Li
  • Wen-wu Liu
  • Mei Zhang
  • Min GuoEmail author
Invited Review


The trend toward lead-free or lead-less perovskite solar cells (PSCs) has attracted increasing attention over the past few years because the toxicity of lead (Pb) is one of the substantial restrictions for large-scale applications. Researchers have investigated the viability of substituting Pb with other elements (group 14 elements, group 2 elements, transition-metal elements, and group 13 and 15 elements) in the three-dimensional (3D) perovskites by theoretical calculations and experimental explorations. In this paper, recent research progress in Pb-less and Pb-free PSCs on the perovskite compositions, deposition methods, and device structures are summarized and the main problems that hinder the enhancement of device efficiency and stability are discussed in detail. To date, the fully Sn-based PSCs have shown a power conversion efficiency (PCE) of 8.12% and poor device stability. However, lead-less PSCs have shown higher PCE and a better stability. In addition, the introduction of double-perovskite materials also draws researchers’ attention. We believe that the engineering of elemental composition, perovskite deposition methods, and interfacial modification are critical for the future development of Pb-less and Pb-free PSCs.


perovskite solar cells lead-free perovskite materials lead-less perovskite materials composition engineering stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. 51572020 and 51772023).


  1. [1]
    A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050.CrossRefGoogle Scholar
  2. [2]
    K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, and N. Miura, Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3, Solid State Commun., 127(2003), No. 9–10, p. 619.CrossRefGoogle Scholar
  3. [3]
    T. Baikie, Y.N. Fang, J.M. Kadro, et al., Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications, J. Mater. Chem. A, 1(2013), No. 18, p. 5628.CrossRefGoogle Scholar
  4. [4]
    C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem., 52(2013), No. 15, p. 9019.CrossRefGoogle Scholar
  5. [5]
    S.Y. Sun, T. Salim, N. Mathews, et al., The origin of high efficiency in low-temperature solution-processable bilayer or-ganometal halide hybrid solar cells, Energy Environ. Sci., 7(2013), No. 1, p. 399.CrossRefGoogle Scholar
  6. [6]
    H.S. Kim, C.R. Lee, J.H. Im, et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%, Sci. Rep., 2(2012), art. No. 591.Google Scholar
  7. [7]
    NREL, Best Research-Cell Efficiencies [2018-07-16].
  8. [8]
    M. Gratzel, The light and shade of perovskite solar cells, Nat. Mater., 13(2014), No. 9, p. 838.CrossRefGoogle Scholar
  9. [9]
    S.J. Li, Y. Lin, W.W. Tan, et al., Preparation and performance of dye-sensitized solar cells based on ZnO-modified TiO2 electrodes, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 92.CrossRefGoogle Scholar
  10. [10]
    M. Saliba, T. Matsui, J.Y. Seo, et al., Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency, Energy Environ. Sci., 9(2016), No. 6, p. 1989.CrossRefGoogle Scholar
  11. [11]
    W.S. Yang, B.W. Park, E.H. Jung, et al., Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells, Science, 356(2017), No. 6345, p. 1376.CrossRefGoogle Scholar
  12. [12]
    C.W. Liu, R.X. Zhu, A. Ng, et al., Investigation of high performance TiO2 nanorod array perovskite solar cells, J. Mater. Chem. A, 5(2017), No. 30, p. 15970.CrossRefGoogle Scholar
  13. [13]
    D.Y. Son, J.H. Im, H.S. Kim, and N.G. Park, 11% efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system, J. Phys. Chem. C, 118(2014), No. 30, p. 16567.CrossRefGoogle Scholar
  14. [14]
    J.F. Li, Z.L. Zhang, H.P. Gao, Y. Zhang, and Y.L. Mao, Effect of solvents on the growth of TiO2 nanorods and their perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 38, p. 19476.CrossRefGoogle Scholar
  15. [15]
    J.Y. Jeng, Y.F. Chiang, M.H. Lee, et al., CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater., 25(2013), No. 27, p. 3727.CrossRefGoogle Scholar
  16. [16]
    H.S. Kim, S.H. Im, and N.G. Park, Organolead halide perovskite: New horizons in solar cell research, J. Phys. Chem. C, 118(2014), No. 11, p. 5615.CrossRefGoogle Scholar
  17. [17]
    F. Aslan, G. Adam, P. Stadler, A. Göktaş, I.H. Mutlu, and N.S. Sariciftci, Sol-gel derived In2S3 buffer layers for inverted organic photovoltaic cells, Sol. Energy, 108(2014), p. 230.CrossRefGoogle Scholar
  18. [18]
    G. Yang, H. Tao, P.L. Qin, W.J. Ke, and G.J. Fang, Recent progress in electron transport layers for efficient perovskite solar cells, J. Mater. Chem. A, 4(2016), No. 11, p. 3970.CrossRefGoogle Scholar
  19. [19]
    J.R. Lian, B. Lu, F.F. Niu, P.J. Zeng, and X.W. Zhan, Electron-transport materials in perovskite solar cells, Small Methods, 2(2018), No. 10, p. 1800082.CrossRefGoogle Scholar
  20. [20]
    Y.P. Xia, P.H. Wang, S.W. Shi, et al., Effect of oxygen partial pressure and transparent substrates on the structural and optical properties of ZnO thin films and their performance in energy harvesters, Int. J. Miner. Metall. Mater., 24(2017), No. 6, p. 675.CrossRefGoogle Scholar
  21. [21]
    P. Gao, M. Grätzel, and M.K. Nazeeruddin, Organohalide lead perovskites for photovoltaic applications, Energy Environ. Sci., 7(2014), No. 8, p. 2448.CrossRefGoogle Scholar
  22. [22]
    Q. Jiang, X.W. Zhang, and J.B. You, SnO2: A wonderful electron transport layer for perovskite solar cells, Small, 14(2018), No. 31, art. No. 1801154.Google Scholar
  23. [23]
    P. Zhang, J. Wu, T. Zhang, et al., Perovskite solar cells with ZnO electron-transporting materials, Adv. Mater., 30(2018), No. 3, art. No. 1703737.CrossRefGoogle Scholar
  24. [24]
    A. Goktas, F. Aslan, B. Yesilata, and I. Boz, Physical properties of solution processable n-type Fe and Al co-doped ZnO nanostructured thin films: Role of Al doping levels and annealing, Mater. Sci. Semicon. Process., 75(2018), p. 221.CrossRefGoogle Scholar
  25. [25]
    Z.Q. Zhu and J. Zhou, Rapid growth of ZnO hexagonal tubes by direct microwave heating, Int. J. Miner. Metall. Mater., 17(2010), No. 1, p. 80.CrossRefGoogle Scholar
  26. [26]
    X.C. Yang, H.X. Wang, B. Cai, Z. Yu, and L.C. Sun, Progress in hole-transporting materials for perovskite solar cells, J. Energy Chem., 27(2018), No. 3, p. 650.CrossRefGoogle Scholar
  27. [27]
    W.B. Yan, S.Y. Ye, Y.L. Li, et al., Hole-transporting materials in inverted planar perovskite solar cells, Adv. Energy Mater., 6(2016), No. 17, art. No. 1600474.CrossRefGoogle Scholar
  28. [28]
    M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith, Efficient hybrid solar cells based on me-so-superstructured organometal halide perovskites, Science, 338(2012), No. 6107, p. 643.CrossRefGoogle Scholar
  29. [29]
    M.D. Xiao, F.Z. Huang, W.C. Huang, et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells, Angew. Chem., 53(2014), No. 37, p. 9898.CrossRefGoogle Scholar
  30. [30]
    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., 13(2014), No. 9, p. 897.CrossRefGoogle Scholar
  31. [31]
    N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, and N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best Efficiency of 19.7% fabricated via lewis base adduct of lead(II) iodide, J. Am. Chem. Soc., 137(2015), No. 27, p. 8696.CrossRefGoogle Scholar
  32. [32]
    Q. Chen, H.P. Zhou, Z.R. Hong, et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2014), No. 2, p. 622.CrossRefGoogle Scholar
  33. [33]
    Z.G. Xiao, C. Bi, Y.C. Shao, et al., Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers, Energy Environ. Sci., 7(2014), No. 8, p. 2619.CrossRefGoogle Scholar
  34. [34]
    W.S. Yang, J.H. Noh, N.J. Jeon, et al., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science, 348(2015), No. 6240, p. 1234.CrossRefGoogle Scholar
  35. [35]
    L. Yang, A.T. Barrows, D.G. Lidzey, and T. Wang, Recent progress and challenges of organometal halide perovskite solar cells, Rep. Prog. Phys., 79(2016), No. 2, p. 026501.CrossRefGoogle Scholar
  36. [36]
    J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells, Nano Lett., 13(2013), No. 4, p. 1764.CrossRefGoogle Scholar
  37. [37]
    G.D. Niu, X.D. Guo, and L.D. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 17, p. 8970.CrossRefGoogle Scholar
  38. [38]
    T.A. Berhe, W.N. Su, C.H. Chen, et al., Organometal halide perovskite solar cells: Degradation and stability, Energy Environ. Sci., 9(2016), No. 2, p. 323.CrossRefGoogle Scholar
  39. [39]
    Q. Jiang, Z.M. Chu, P.Y. Wang, et al., Planar-structure perovskite solar cells with efficiency beyond 21%, Adv. Mater., 29(2017), No. 46, art. No. 1703852.CrossRefGoogle Scholar
  40. [40]
    D.Y. Son, J.W. Lee, Y.J. Choi, et al., Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells, Nat. Energy, 1(2016), No. 7, art. No. 16081.CrossRefGoogle Scholar
  41. [41]
    D.Q. Bi, C.Y. Yi, J.S. Luo, et al., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1(2016), No. 10, art. No. 16142.CrossRefGoogle Scholar
  42. [42]
    X. Li, D. Bi, C. Yi, et al., A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells, Science, 353(2016), No. 6294, p. 58.CrossRefGoogle Scholar
  43. [43]
    N.J. Jeon, J.H. Noh, W.S. Yang, et al., Compositional engineering of perovskite materials for high-performance solar cells, Nature, 517(2015), No. 7535, p. 476.CrossRefGoogle Scholar
  44. [44]
    J.X. Song, W.D. Hu, X.F. Wang, et al., HC(NH2)2PbI3 as a thermally stable absorber for efficient ZnO-based perovskite solar cells, J. Mater. Chem. A, 4(2016), No. 21, p. 8435.CrossRefGoogle Scholar
  45. [45]
    C.H. Chiang, J.W. Lin, and C.G. Wu, One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module, J. Mater. Chem. A, 4(2016), No. 35, p. 13525.CrossRefGoogle Scholar
  46. [46]
    L. Li, N. Liu, Z.Q. Xu, Q. Chen, X.D. Wang, and H.P. Zhou, Precise composition tailoring of mixed-cation hybrid perovs-kites for efficient solar cells by mixture design methods, ACS Nano, 11(2017), No. 9, p. 8804.CrossRefGoogle Scholar
  47. [47]
    T.Q. Niu, J. Lu, R. Munir, et al., Stable high-performance perovskite solar cells via grain boundary passivation, Adv. Mater., 30(2018), No. 16, art. No. 1706576.CrossRefGoogle Scholar
  48. [48]
    X.P. Zheng, B. Chen, J. Dai, et al., Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy, 2(2017), No. 7, art. No. 17102.CrossRefGoogle Scholar
  49. [49]
    Q. Chen, H. Zhou, T.B. Song, et al., Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells, Nano Lett., 14(2014), No. 7, p. 4158.CrossRefGoogle Scholar
  50. [50]
    J.Z. Chen, J.Y. Seo, and N.G. Park, Simultaneous improvement of photovoltaic performance and stability by in situ formation of 2D perovskite at (FAPbI3)0.88(CsPbBr3)0.12/CuSCN interface, Adv. Energy Mater., 8(2018), No. 12, art. No. 1702714.CrossRefGoogle Scholar
  51. [51]
    H.C. Zai, C. Zhu, H.P. Xie, et al., Congeneric incorporation of CsPbBr3 nanocrystals in a hybrid perovskite heterojunction for photovoltaic efficiency enhancement, ACS Energy Lett., 3(2017), No. 1, p. 30.CrossRefGoogle Scholar
  52. [52]
    L. Li, X. Jin, N. Liu, Q. Chen, W.B. Zhang, and H.P. Zhou, Efficient moisture-resistant perovskite solar cell with nano-structure featuring 3D amine motif, Solar RRL, 2(2018), No. 9, art. No. 1800069.Google Scholar
  53. [53]
    M.A. Green, A. Ho-Baillie, and H.J. Snaith, The emergence of perovskite solar cells, Nat. Photonics, 8(2014), No. 7, p. 506.CrossRefGoogle Scholar
  54. [54]
    Q.X. Fu, X.L. Tang, B. Huang, T. Hu, L.C. Tan, L. Chen, and Y.W. Chen, Recent progress on the long-term stability of perovskite solar cells, Adv. Sci., 5(2018), No. 5, art. No. 1700387.Google Scholar
  55. [55]
    W.D. Zhu, C.X. Bao, F.M. Li, et al., A halide exchange engineering for CH3NH3PbI3–xBrx perovskite solar cells with high performance and stability, Nano Energy, 19(2016), p. 17.CrossRefGoogle Scholar
  56. [56]
    Z. Li, M.J. Yang, J.S. Park, S.H. Wei, J.J. Berry, and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys, Chem. Mater., 28(2016), No. 1, p. 284.CrossRefGoogle Scholar
  57. [57]
    E. Smecca, Y. Numata, I. Deretzis, et al., Stability of solution-processed MAPbI3 and FAPbI3 layers, Phys. Chem. Chem. Phys., 18(2016), No. 19, p. 13413.CrossRefGoogle Scholar
  58. [58]
    G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith, Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells, Energy Environ. Sci., 7(2014), No. 3, p. 982.CrossRefGoogle Scholar
  59. [59]
    Y. Ogomi, A. Morita, S. Tsukamoto, et al., CH3NH3SnxPb(1–x)I3 perovskite solar cells covering up to 1060 nm, J. Phys. Chem. Lett., 5(2014), No. 6, p. 1004.CrossRefGoogle Scholar
  60. [60]
    N.K. Noel, S.D. Stranks, A. Abate, et al., Lead-free organic-inorganic tin halide perovskites for photovoltaic applications, Energy Environ. Sci., 7(2014), No. 9, p. 3061.CrossRefGoogle Scholar
  61. [61]
    F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis, Lead-free solid-state organic-inorganic halide perovskite solar cells, Nat. Photonics, 8(2014), No. 6, p. 489.CrossRefGoogle Scholar
  62. [62]
    T.M. Koh, T. Krishnamoorthy, N. Yantara, et al., Formamidinium tin-based perovskite with low E g for photovoltaic applications, J. Mater. Chem. A, 3(2015), No. 29, p. 14996.CrossRefGoogle Scholar
  63. [63]
    W.Q. Liao, D.W. Zhao, Y. Yu, et al., Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22%, Adv. Mater., 28(2016), No. 42, p. 9333.CrossRefGoogle Scholar
  64. [64]
    W.J. Ke, C.C. Stoumpos, M.H. Zhu, et al., Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite FASnI3, Sci. Adv., 3(2017), No. 8, art. No. e1701293.Google Scholar
  65. [65]
    W.J. Ke, P. Priyanka, S. Vegiraju, et al., Dopant-free tetrakis-triphenylamine hole transporting material for efficient tin-based perovskite solar cells, J. Am. Chem. Soc., 140(2018), No. 1, p. 388.CrossRefGoogle Scholar
  66. [66]
    Z.R. Zhao, F.D. Gu, Y.L. Li, et al., Mixed-organic-cation tin iodide for lead-free perovskite solar cells with an efficiency of 8.12%, Adv. Sci., 4(2017), No. 11, art. No. 1700204.Google Scholar
  67. [67]
    T. Yokoyama, D.H. Cao, C.C. Stoumpos, et al., Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process, J. Phys. Chem. Lett., 7(2016), No. 5, p. 776.CrossRefGoogle Scholar
  68. [68]
    J. Xi, Z.X. Wu, B. Jiao, et al., Multichannel interdiffusion driven FASnI3 film formation using aqueous hybrid salt/polymer solutions toward flexible lead-free perovskite solar cells, Adv. Mater., 29(2017), No. 23, art. No. 1606964.Google Scholar
  69. [69]
    K.P. Marshall, M. Walker, R.I. Walton, and R.A. Hatton, Enhanced stability and efficiency in hole-transport-layer-free CsSnI3 perovskite photovoltaics, Nat. Energy, 1(2016), No. 12, art. No. 16178.Google Scholar
  70. [70]
    C.X. Ran, J. Xi, W.Y. Gao, et al., Bilateral interface engineering toward efficient 2D-3D bulk heterojunction tin halide lead-free perovskite solar cells, ACS Energy Lett., 3(2018), No. 3, p. 713.CrossRefGoogle Scholar
  71. [71]
    I. Chung, B. Lee, J.Q. He, R.P.H. Chang, and M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency, Nature, 485(2012), No. 7399, p. 486.CrossRefGoogle Scholar
  72. [72]
    M.H. Kumar, S. Dharani, W.L. Leong, et al., Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation, Adv. Mater., 26(2014), No. 41, p. 7122.CrossRefGoogle Scholar
  73. [73]
    D. Sabba, H.K. Mulmudi, R.R. Prabhakar, et al., Impact of anionic Br substitution on open circuit voltage in lead free perovskite (CsSnI3–xBrx) solar cells, J. Phys. Chem. C, 119(2015), No. 4, p. 1763.CrossRefGoogle Scholar
  74. [74]
    S. Gupta, T. Bendikov, G. Hodes, and D. Cahen, CsSnBr3, a lead-free halide perovskite for long-term solar cell application: Insights on SnF2 addition, ACS Energy Lett., 1(2016), No. 5, p. 1028.CrossRefGoogle Scholar
  75. [75]
    D. Moghe, L.L. Wang, C.J. Traverse, et al., All vapor-deposited lead-free doped CsSnBr3 planar solar cells, Nano Energy, 28(2016), p. 469.CrossRefGoogle Scholar
  76. [76]
    N. Wang, Y.Y. Zhou, M.G. Ju, et al., Heterojunc-tion-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films, Adv. Energy Mater., 6(2016), No. 24, art. No. 1601130.Google Scholar
  77. [77]
    P. Xu, S.Y. Chen, H.J. Xiang, X.G. Gong, and S.H. Wei, Influence of defects and synthesis conditions on the photovoltaic performance of perovskite semiconductor CsSnl3, Chem. Mater., 26(2014), No. 20, p. 6068.CrossRefGoogle Scholar
  78. [78]
    W.Z. Li, J.W. Li, J.L. Li, J.D. Fan, Y.H. Mai, and L.D. Wang, Addictive-assisted construction of all-inorganic CsSnIBr2 mesoscopic perovskite solar cells with superior thermal stability up to 473 K, J. Mater. Chem. A, 4(2016), No. 43, p. 17104.CrossRefGoogle Scholar
  79. [79]
    L.Z. Zhu, B. Yuh, S. Schoen, et al., Solvent-molecule-mediated manipulation of crystalline grains for efficient planar binary lead and tin triiodide perovskite solar cells, Nanoscale, 8(2016), No. 14, p. 7621.CrossRefGoogle Scholar
  80. [80]
    F. Zuo, S.T. Williams, P.W. Liang, C.C. Chueh, C.Y. Liao, and A.K.Y. Jen, Binary-metal perovskites toward high-performance planar-heterojunction hybrid solar cells, Adv. Mater., 26(2014), No. 37, p. 6454.CrossRefGoogle Scholar
  81. [81]
    C. Liu, J. Fan, H. Li, C. Zhang, and Y. Mai, Highly efficient perovskite solar cells with substantial reduction of lead content, Sci. Rep., 6(2016), art. No. 35705.Google Scholar
  82. [82]
    J.D. Fan, C. Liu, H.L. Li, C.L. Zhang, W.Z. Li, and Y.H. Mai, Molecular Self-assembly fabrication and carrier dynamics of stable and efficient CH3NH3Pb(1–x) SnxI3 perovskite solar cells, ChemSusChem, 10(2017), No. 19, p. 3839.CrossRefGoogle Scholar
  83. [83]
    C. Liu, W.Z. Li, H.L. Li, C.L. Zhang, J.D. Fan, and Y.H. Mai, C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency, Nanoscale, 9(2017), No. 37, p. 13967.CrossRefGoogle Scholar
  84. [84]
    E. Mosconi, P. Umari, and F. De Angelis, Electronic and optical properties of mixed Sn-Pb organohalide perovskites: A first principles investigation, J. Mater. Chem. A, 3(2015), No. 17, p. 9208.CrossRefGoogle Scholar
  85. [85]
    F. Hao, C.C. Stoumpos, R.P.H. Chang, and M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells, J. Am. Chem. Soc., 136(2014), No. 22, p. 8094.CrossRefGoogle Scholar
  86. [86]
    Y.L. Li, W.H. Sun, W.B. Yan, et al., 50% Sn-based planar perovskite solar cell with power conversion efficiency up to 13.6%, Adv. Energy Mater., 6(2016), No. 24, art. No. 1601353.Google Scholar
  87. [87]
    X.B. Xu, C.C. Chueh, Z.B. Yang, et al., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells, Nano Energy, 34(2017), p. 392.CrossRefGoogle Scholar
  88. [88]
    G. Kapil, T.S. Ripolles, K. Hamada, et al., Highly efficient 17.6% tin-lead mixed perovskite solar cells realized through spike structure, Nano Lett, 18(2018), No. 6, p. 3600.CrossRefGoogle Scholar
  89. [89]
    S. Lee and D.W. Kang, Highly efficient and stable Sn-rich perovskite solar cells by introducing bromine, ACS Appl. Mater. Interfaces, 9(2017), No. 27, p. 22432.CrossRefGoogle Scholar
  90. [90]
    W.Q. Liao, D.W. Zhao, Y. Yu, et al., Fabrication of efficient low-bandgap perovskite solar cells by combining formamidinium tin iodide with methylammonium lead iodide, J. Am. Chem. Soc., 138(2016), No. 38, p. 12360.CrossRefGoogle Scholar
  91. [91]
    D.W. Zhao, Y. Yu, C.L. Wang, et al., Low-bandgap mixed tin-lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells, Nat. Energy, 2(2017), No. 4, art. No. 17018.Google Scholar
  92. [92]
    N.J. Jeon, H. Na, E.H. Jung, et al., A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells, Nat. Energy, 3(2018), No. 8, p. 682.CrossRefGoogle Scholar
  93. [93]
    D.Y. Luo, W.Q. Yang, Z.P. Wang, et al., Enhanced photovoltage for inverted planar heterojunction perovskite solar cells, Science, 360(2018), No. 6396, p. 1442.CrossRefGoogle Scholar
  94. [94]
    M.M. Tavakoli, S.M. Zakeeruddin, M. Grätzel, and Z.Y. Fan, Large-grain tin-rich perovskite films for efficient solar cells via metal alloying technique, Adv. Mater., 30(2018), No. 11, art. No. 1705998.CrossRefGoogle Scholar
  95. [95]
    C.M. Tsai, H.P. Wu, S.T. Chang, et al., Role of tin chloride in tin-rich mixed-halide perovskites applied as mesoscopic solar cells with a carbon counter electrode, ACS Energy Lett., 1(2016), No. 6, p. 1086.CrossRefGoogle Scholar
  96. [96]
    T. Krishnamoorthy, H. Ding, C. Yan, et al., Lead-free germanium iodide perovskite materials for photovoltaic applications, J. Mater. Chem. A, 3(2015), No. 47, p. 23829.CrossRefGoogle Scholar
  97. [97]
    I. Kopacic, B. Friesenbichler, S.F. Hoefler, et al., Enhanced performance of germanium halide perovskite solar cells through compositional engineering, ACS Appl. Energy Mater., 1(2018), No. 2, p. 343.CrossRefGoogle Scholar
  98. [98]
    K. Wang, Z.Q. Liang, X.Q. Wang, and X.D. Cui, Lead replacement in CH3NH3PbI3 perovskites, Adv. Electron. Mater., 1(2015), No. 10, art. No. 1500089.CrossRefGoogle Scholar
  99. [99]
    M. Pazoki, T.J. Jacobsson, A. Hagfeldt, G. Boschloo, and T. Edvinsson, Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals, Phys. Rev. B, 93(2016), No. 14, art. No. 144105.CrossRefGoogle Scholar
  100. [100]
    T.J. Jacobsson, M. Pazoki, A. Hagfeldt, and T. Edvinsson, Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: Theory and preliminary experiments on CH3NH3SrI3, J. Phys. Chem. C, 119(2015), No. 46, p. 25673.CrossRefGoogle Scholar
  101. [101]
    M.C. Wu, W.C. Chen, S.H. Chan, and W.F. Su, The effect of strontium and barium doping on perovskite-structured energy materials for photovoltaic applications, Appl. Surf. Sci., 429(2018), p. 9.CrossRefGoogle Scholar
  102. [102]
    M.C. Wu, T.H. Lin, S.H. Chan, and W.F. Su, Improved efficiency of perovskite photovoltaics based on Ca-doped methylammonium lead halide, J. Taiwan Inst. Chem. Eng., 80(2017), p. 695.CrossRefGoogle Scholar
  103. [103]
    H.B. Zhang, M.H. Shang, X.Y. Zheng, et al., Ba2+ doped CH3NH3PbI3 to tune the energy state and improve the performance of perovskite solar cells, Electrochim. Acta, 254(2017), p. 165.CrossRefGoogle Scholar
  104. [104]
    S.H. Chan, M.C. Wu, K.M. Lee, W.C. Chen, T.H. Lin, and W.F. Su, Enhancing perovskite solar cell performance and stability by doping barium in methylammonium lead halide, J. Mater. Chem. A, 5(2017), No. 34, p. 18044.CrossRefGoogle Scholar
  105. [105]
    X.X. Shai, L.J. Zuo, P.Y. Sun, et al., Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite, Nano Energy, 36(2017), p. 213.CrossRefGoogle Scholar
  106. [106]
    C.F.J. Lau, M. Zhang, X.F. Deng, et al., Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells, ACS Energy Lett., 2(2017), No. 10, p. 2319.CrossRefGoogle Scholar
  107. [107]
    D. Perez-Del-Rey, D. Forgács, E.M. Hutter, et al., Strontium insertion in methylammonium lead iodide: Long charge carrier lifetime and high fill-factor solar cells, Adv. Mater., 28(2016), No. 44, p. 9839.CrossRefGoogle Scholar
  108. [108]
    H. Zhang, H. Wang, S.T. Williams, et al., SrCl2 derived perovskite facilitating a high efficiency of 16% in hole-conductor-free fully printable mesoscopic perovskite solar cells, Adv. Mater., 29(2017), No. 15, art. No. 1606608.CrossRefGoogle Scholar
  109. [109]
    P.P. Boix, S. Agarwala, T.M. Koh, N. Mathews, and S.G. Mhaisalkar, Perovskite solar cells: Beyond methylammonium lead iodide, J. Phys. Chem. Lett., 6(2015), No. 5, p. 898.CrossRefGoogle Scholar
  110. [110]
    Z.H. Nie, J. Yin, H.W. Zhou, et al., Layered and Pb-free organic-inorganic perovskite materials for ultraviolet photores-ponse: (010)-oriented (CH3NH3)2MnCl4 thin film, ACS Appl. Mater. Interfaces, 8(2016), No. 41, p. 28187.CrossRefGoogle Scholar
  111. [111]
    X.P. Cui, K.J. Jiang, J.H. Huang, et al., Cupric bromide hybrid perovskite heterojunction solar cells, Synth. Met., 209(2015), p. 247.CrossRefGoogle Scholar
  112. [112]
    D. Cortecchia, H.A. Dewi, J. Yin, et al., Lead-free MA2CuClxBr4–x hybrid perovskites, Inorg. Chem., 55(2016), No. 3, p. 1044.CrossRefGoogle Scholar
  113. [113]
    X.L. Li, B.C. Li, J.H. Chang, et al., (C6H5CH2NH3)2CuBr4: A lead-free, highly stable two-dimensional perovskite for solar cell applications, ACS Appl. Energy Mater., 1(2018), No. 6, p. 2709.CrossRefGoogle Scholar
  114. [114]
    X.X. Liu, T.J. Huang, L.Y. Zhang, et al., Highly stable, new, organic-inorganic perovskite (CH3NH3)2PdBr4: Synthesis, structure, and physical properties, Chemistry, 24(2018), No. 19, p. 4991.CrossRefGoogle Scholar
  115. [115]
    L.A. Frolova, D.V. Anokhin, K.L. Gerasimov, N.N. Dremova, and P.A. Troshin, Exploring the effects of the Pb2+ substitution in MAPbI3 on the photovoltaic performance of the hybrid perovskite solar cells, J. Phys. Chem. Lett., 7(2016), No. 21, p. 4353.CrossRefGoogle Scholar
  116. [116]
    M. Jahandar, J.H. Heo, C.E. Song, et al., Highly efficient metal halide substituted CH3NH3I(PbI2)1–x(CuBr2)x planar perovskite solar cells, Nano Energy, 27(2016), p. 330.CrossRefGoogle Scholar
  117. [117]
    J.J. Jin, H. Li, C. Chen, et al., Enhanced performance of perovskite solar cells with zinc chloride additives, ACS Appl. Mater. Interfaces, 9(2017), No. 49, p. 42875.CrossRefGoogle Scholar
  118. [118]
    M.T. Klug, A. Osherov, A.A. Haghighirad, et al., Tailoring metal halide perovskites through metal substitution: Influence on photovoltaic and material properties, Energy Environ. Sci., 10(2017), No. 1, p. 236.CrossRefGoogle Scholar
  119. [119]
    M. Li, Z.K. Wang, M.P. Zhuo, et al., Pb-Sn-Cu ternary organometallic halide perovskite solar cells, Adv. Mater., 30(2018), No. 20, p. art. No. 1800258.CrossRefGoogle Scholar
  120. [120]
    S. Niki, M. Contreras, I. Repins, et al., CIGS absorbers and processes, Prog. Photovolt: Res. Appl., 18(2010), No. 6, p. 453.CrossRefGoogle Scholar
  121. [121]
    S.Y. Chen, A. Walsh, X.G. Gong, and S.H. Wei, Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers, Adv. Mater., 25(2013), No. 11, p. 1522.CrossRefGoogle Scholar
  122. [122]
    H.P. Zhou, W.C. Hsu, H.S. Duan, et al., CZTS nanocrystals: A promising approach for next generation thin film photo-voltaics, Energy Environ. Sci., 6(2013), No. 10, p. 2822.CrossRefGoogle Scholar
  123. [123]
    J. Zhang, M.H. Shang, P. Wang, et al., n-Type doping and energy states tuning in CH3NH3Pb1–xSb2x/3I3 perovskite solar cells, ACS Energy Lett., 1(2016), No. 3, p. 535.CrossRefGoogle Scholar
  124. [124]
    T. Oku, Y. Ohishi, and A. Suzuki, Effects of antimony addition to perovskite-type CH3NH3PbI3 photovoltaic devices, Chem. Lett., 45(2016), No. 2, p. 134.CrossRefGoogle Scholar
  125. [125]
    S. Chatterjee, U. Dasgupta, and A.J. Pal, Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage, J. Phys. Chem. C, 121(2017), No. 37, p. 20177.CrossRefGoogle Scholar
  126. [126]
    G.E. Eperon, G.M. Paterno, R.J. Sutton, et al., Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 39, p. 19688.CrossRefGoogle Scholar
  127. [127]
    Y.Q. Hu, F. Bai, X.B. Liu, et al., Bismuth incorporation stabilized α-CsPbI3 for fully inorganic perovskite solar cells, ACS Energy Lett., 2(2017), No. 10, p. 2219.CrossRefGoogle Scholar
  128. [128]
    Z.K. Wang, M. Li, Y.G. Yang, et al., High efficiency Pb–In binary metal perovskite solar cells, Adv. Mater., 28(2016), No. 31, p. 6695.CrossRefGoogle Scholar
  129. [129]
    A. Singh, K.M. Boopathi, A. Mohapatra, Y.F. Chen, G. Li, and C.W. Chu, Photovoltaic performance of vapor-assisted solution-processed layer polymorph of Cs3Sb2I9, ACS Appl. Mater. Interfaces, 10(2018), No. 3, p. 2566.CrossRefGoogle Scholar
  130. [130]
    P.C. Harikesh, H.K. Mulmudi, B. Ghosh, et al., Rb as an alternative cation for templating inorganic lead-free perovskites for solution processed photovoltaics, Chem. Mater., 28(2016), No. 20, p. 7496.CrossRefGoogle Scholar
  131. [131]
    J.C. Hebig, I. Kühn, J. Flohre, and T. Kirchartz, Optoelectronic properties of (CH3NH3)3Sb2I9 thin films for photovoltaic applications, ACS Energy Lett., 1(2016), No. 1, p. 309.CrossRefGoogle Scholar
  132. [132]
    M. Abulikemu, S. Ould-Chikh, X.H. Miao, et al., Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9, J. Mater. Chem. A, 4(2016), No. 32, p. 12504.CrossRefGoogle Scholar
  133. [133]
    M.B. Johansson, H.M. Zhu, and E.M.J. Johansson, Extended photo-conversion spectrum in low-toxic bismuth halide perovskite solar cells, J. Phys. Chem. Lett., 7(2016), No. 17, p. 3467.CrossRefGoogle Scholar
  134. [134]
    C. McDonald, C.S. Ni, V. Švrček, et al., Zero-dimensional methylammonium iodo bismuthate solar cells and synergistic interactions with silicon nanocrystals, Nanoscale, 9(2017), No. 47, p. 18759.CrossRefGoogle Scholar
  135. [135]
    T. Singh, A. Kulkarni, M. Ikegami, and T. Miyasaka, Effect of electron transporting layer on bismuth-based lead-free perovskite (CH3NH3)3Bi2I9 for photovoltaic applications, ACS Appl. Mater. Interfaces, 8(2016), No. 23, p. 14542.CrossRefGoogle Scholar
  136. [136]
    Y. Kim, Z.Y. Yang, A. Jain, et al., Pure cubic-phase hybrid iodobismuthates AgBi2I7 for thin-film photovoltaics, Angew. Chem. Int. Ed., 128(2016), No. 33, p. 9586.CrossRefGoogle Scholar
  137. [137]
    B.W. Park, B. Philippe, X.L. Zhang, H. Rensmo, G. Boschloo, and E.M.J. Johansson, Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application, Adv. Mater., 27(2016), No. 43, p. 6806.CrossRefGoogle Scholar
  138. [138]
    C.X. Ran, Z.X. Wu, J. Xi, et al., Construction of compact methylammonium bismuth iodide film promoting lead-free inverted planar heterojunction organohalide solar cells with open-circuit voltage over 0.8 V, J. Phys. Chem. Lett., 8(2017), No. 2, p. 394.CrossRefGoogle Scholar
  139. [139]
    S.S. Shin, J.P.C. Baena, R.C. Kurchin, et al., Solvent-engineering method to deposit compact bismuth-based thin films: Mechanism and application to photovoltaics, Chem. Mater., 30(2018), No. 2, p. 336.CrossRefGoogle Scholar
  140. [140]
    A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa, A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications, J. Am. Chem. Soc., 138(2016), No. 7, p. 2138.CrossRefGoogle Scholar
  141. [141]
    E.T. McClure, M.R. Ball, W. Windl, and P.M. Woodward, Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors, Chem. Mater., 28(2016), No. 5, p. 1348.CrossRefGoogle Scholar
  142. [142]
    G. Volonakis, M.R. Filip, A.A. Haghighirad, et al., Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett., 7(2016), No. 7, p. 1254.CrossRefGoogle Scholar
  143. [143]
    F.X. Wei, Z.Y. Deng, S.J. Sun, et al., The synthesis, structure and electronic properties of a lead-free hybrid inorganic-organic double perovskite (MA)2KBiCl6 (MA = methylammonium), Mater. Horiz., 3(2016), No. 4, p. 328.CrossRefGoogle Scholar
  144. [144]
    F.X. Wei, Z.Y. Deng, S.J. Sun, et al., Synthesis and properties of a lead-free hybrid double perovskite: (CH3NH3)2AgBiBr6, Chem. Mater., 29(2017), No. 3, p. 1089.CrossRefGoogle Scholar
  145. [145]
    E. Greul, M.L. Petrus, A. Binek, P. Docampo, and T. Bein, Highly stable, phase pure Cs2AgBiBr6 double perovskite thin films for optoelectronic applications, J. Mater. Chem. A, 5(2017), No. 37, p. 19972.CrossRefGoogle Scholar
  146. [146]
    W.H. Ning, F. Wang, B. Wu, et al., Long electron-hole diffusion length in high-quality lead-free double perovskite films, Adv. Mater., 30(2018), No. 20, art. No. 1706246.CrossRefGoogle Scholar
  147. [147]
    C.C. Wu, Q.H. Zhang, Y. Liu, et al., The dawn of lead-free perovskite solar cell: Highly stable double perovskite Cs2AgBiBr6 film, Adv. Sci., 5(2018), No. 3, art. No. 1700759.CrossRefGoogle Scholar
  148. [148]
    W.Y. Gao, C.X. Ran, J. Xi, et al., High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar hetero-junction solar cells with 2.2% efficiency, ChemPhysChem, 19(2018), No. 14, p. 1696.CrossRefGoogle Scholar
  149. [149]
    G. Volonakis, A.A. Haghighirad, R.L. Milot, et al., Cs2InAgCl6: A new lead-free halide double perovskite with direct band gap, J. Phys. Chem. Lett., 8(2017), No. 4, p. 772.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Huan-yu Zhang
    • 1
  • Rui Li
    • 1
  • Wen-wu Liu
    • 2
  • Mei Zhang
    • 1
  • Min Guo
    • 1
    Email author
  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhouChina

Personalised recommendations