Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing

  • Li-ying Huang
  • Kuai-she WangEmail author
  • Wen WangEmail author
  • Kai Zhao
  • Jie Yuan
  • Ke Qiao
  • Bing Zhang
  • Jun Cai


Low-carbon steel plates were successfully subjected to normal friction stir processing (NFSP) in air and submerged friction stir processing (SFSP) under water, and the microstructure, mechanical properties, and corrosion behavior of the NFSP and SFSP samples were investigated. Phase transformation and dynamic recrystallization resulted in fine-grained ferrite and martensite in the processed zone. The SFSP samples had smaller ferrites (5.1 μm), finer martensite laths (557 nm), and more uniform distribution of martensite compared to the NFSP samples. Compared to the base material (BM), the microhardness of the NFSP and SFSP samples increased by 19.8% and 27.1%, respectively because of the combined strengthening effects of grain refinement, phase transformation, and dislocation. The ultimate tensile strengths (UTSs) of the NFSP and SFSP samples increased by 27.1% and 38.7%, respectively. Grain refinement and martensite transformation also improved the electrochemical corrosion properties of the low-carbon steel. Overall, the SFSP samples had better mechanical properties and electrochemical corrosion resistance than the NFSP samples.


low-carbon steel friction stir processing microstructure mechanical properties corrosion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was financially supported by the National Natural Science Foundation of China (Nos. U1360105, U1760201, and 51574192).


  1. [1]
    F. Popa, I. Chicinaş, D. Frunză, I. Nicodim, and D. Banabic, Influence of high deformation on the microstructure of low-carbon steel, Int. J. Miner. Metall. Mater., 21(2014), No. 3, p. 273.CrossRefGoogle Scholar
  2. [2]
    J. Cai, P. Lv, C.L. Zhang, J. Wu, C. Li, and Q.F. Guan, Microstructure and properties of low carbon steel after surface alloying induced by high current pulsed electron beam, Nucl. Instrum. Methods Phys. Res. Sect. B, 410(2017), p. 47.CrossRefGoogle Scholar
  3. [3]
    D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, and G. Purcek, Formability of friction stir processed low carbon steels used in shipbuilding, J. Mater. Sci. Technol., 34(2018), No. 1, p. 237.CrossRefGoogle Scholar
  4. [4]
    E.G. Astafurova, G.G. Zakharova, E.V. Naydenkin, S.V. Dobatkin, and G.I. Raab, Influence of equal-channel angular pressing on the structure and mechanical properties of low-carbon steel 10G2FT, Phys. Met. Metall., 110(2010), No. 3, p. 260.CrossRefGoogle Scholar
  5. [5]
    R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scripta Mater., 42(1999), No. 2, p. 163.CrossRefGoogle Scholar
  6. [6]
    M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing, Int. J. Miner. Metall. Mater., 24(2017), No. 3, p. 297.CrossRefGoogle Scholar
  7. [7]
    W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, Friction Stir Butt Welding, Great Britain Patent, Appl. 9125978.8, 1991.Google Scholar
  8. [8]
    Y.H. Yau, A. Hussain, R.K. Lalwani, H.K. Chan, and N. Hakimi, Temperature distribution study during the friction stir welding process of Al2024-t3 aluminum alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 8, p. 779.CrossRefGoogle Scholar
  9. [9]
    A. Rahbar-kelishami, A. Abdollah-zadeh, M.M. Hadavi, R.A. Seraj, and A.P. Gerlich, Improvement of wear resistance of sprayed layer on 52100 steel by friction stir processing, Appl. Surf. Sci., 316(2014), p. 501.CrossRefGoogle Scholar
  10. [10]
    A. Chabok and K. Dehghani, Formation of nanograin in IF steels by friction stir processing, Mater. Sci. Eng. A, 528(2010), No. 1, p. 309.CrossRefGoogle Scholar
  11. [11]
    K. Dehghani and A. Chabok, Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels, Mater. Sci. Eng. A, 528(2011), No. 13–14, p. 4325.CrossRefGoogle Scholar
  12. [12]
    A. Ghasemi-Kahrizsangi and S.F. Kashani-Bozorg, Microstructure and mechanical properties of steel/TiC nano- composite surface layer produced by friction stir processing, Surf. Coat. Technol., 209(2012), p. 15.CrossRefGoogle Scholar
  13. [13]
    R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater Sci. Eng. R, 50(2005), No. 1–2, p. 1.CrossRefGoogle Scholar
  14. [14]
    W. Wang, K.S. Wang, Q. Guo, and N. Wu, Effect of friction stir processing on microstructure and mechanical properties of cast AZ31 magnesium alloy, Rare Met. Mater. Eng., 41(2012), No. 9, p. 1522.CrossRefGoogle Scholar
  15. [15]
    A. Chabok and K. Dehghani, Effect of processing parameters on the mechanical properties of interstitial free steel subjected to friction stir processing, J. Mater. Eng. Perform., 22(2013), No. 5, p. 1324.CrossRefGoogle Scholar
  16. [16]
    M. Hajian, A. Abdollah-zadeh, S.S. Rezaei-Nejad, H. Assadi, S.M.M. Hadavi, K. Chung, and M. Shokouhimehr, Improvement in cavitation erosion resistance of AISI 316L stainless steel by friction stir processing, Appl. Surf. Sci., 308(2014), p. 184.CrossRefGoogle Scholar
  17. [17]
    M. Mehranfar and K. Dehghani, Producing nanostructured super-austenitic steels by friction stir processing, Mater. Sci. Eng. A, 528(2011), No. 9, p. 3404.CrossRefGoogle Scholar
  18. [18]
    A. Amirafshar and H. Pouraliakbar, Effect of tool pin design on the microstructural evolutions and tribological characteristics of friction stir processed structural steel, Measurement, 68(2015), p. 111.CrossRefGoogle Scholar
  19. [19]
    D.M. Sekban, S.M. Akterer, O. Saray, Z.Y. Ma, and G. Purcek, Formability of friction stir processed low carbon steels used in shipbuilding, J. Mater. Sci. Technol., 34(2018), No. 1, p. 237.CrossRefGoogle Scholar
  20. [20]
    D.M. Sekban, S.M. Aktarer, H. Zhang, P. Xue, Z.Y. Ma, and G. Purcek, Microstructural and mechanical evolution of a low carbon steel by friction stir processing, Metall. Mater. Trans. A, 48(2017), No. 8, p. 3869.CrossRefGoogle Scholar
  21. [21]
    Y. Li, F. Wang, and G. Liu, Grain size effect on the electrochemical corrosion behavior of surface nanocrystallized low-carbon steel, Corrosion, 60(2004), No. 10, p. 891.CrossRefGoogle Scholar
  22. [22]
    H. Zhang, D. Wang, P. Xue, L.H. Wu, D.R. Ni, and Z.Y. Ma, Microstructural evolution and pitting corrosion behavior of friction stir welded joint of high nitrogen stainless steel, Mater. Des., 110(2016), p. 802.CrossRefGoogle Scholar
  23. [23]
    T. Yingsamphancharoen, N. Srisuwan, and A. Rodchanarowan, The electrochemical investigation of the corrosion rates of welded pipe ASTMA106 grade B, Metals, 6(2016), No. 9, p. 207.CrossRefGoogle Scholar
  24. [24]
    P. Xue, W.D. Li, D. Wang, W.G. Wang, B.L. Xiao, and Z.Y. Ma, Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing, Mater. Sci. Eng. A, 670(2016), p. 153.CrossRefGoogle Scholar
  25. [25]
    P. Xue, B.L. Xiao, W.G. Wang, Q. Zhang, D. Wang, Q.Z. Wang, and Z.Y. Ma, Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel, Mater. Sci. Eng. A, 575(2013), p. 30.CrossRefGoogle Scholar
  26. [26]
    S.C. Li, G.M. Zhu, and Y.L. Kang, Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C 1.1Si 1.7Mn steel, J. Alloys Compd., 675(2016), p. 104.CrossRefGoogle Scholar
  27. [27]
    Z.J. Luo, L.P. Wang, M. Wang, J.C. Shen, and H. Su, Effect of lath martensite/bainite microstructure on strength and toughness of a low carbon martensite steel, Trans. Mater. Heat Treat., 33(2012), No. 2, p. 85.Google Scholar
  28. [28]
    S.H. Lee, Y. Saito, K.T. Park, and D.H. Shin, Microstructures and mechanical properties of ultra low carbon if steel processed by accumulative roll bonding process, Mater. Trans., 43(2002), No. 9, p. 2320.CrossRefGoogle Scholar
  29. [29]
    R.B. Singh, N.K. Mukhopadhyay, G.V.S. Sastry, and R. Manna, Development of high-strength bulk ultrafine-grained low carbon steel produced by equal-channel angular pressing, Metall. Mater. Trans. A, 48(2017), No. 11, p. 5449.CrossRefGoogle Scholar
  30. [30]
    L.Y. Huang, K.S. Wang, W. Wang, K. Zhao, J. Yuan, Q. Wang, K. Qiao, and J. Cai, Corrosion properties of low carbon steel prepared by submerged friction stir processing, Mater. Corros., 69(2018), No. 8, p. 1077.CrossRefGoogle Scholar
  31. [31]
    E. Ura-Bińczyk, A. Dobkowska, M. Płocińska, T. Płociński, B. Adamczyk-Cieślak, B. Mazurkiewicz, W. Solarski, J. Banaś, and J. Mizera, The influence of grain refinement on the corrosion rate of carbon steels in fracturing fluids used in shale gas production, Mater. Corros., 68(2017), No. 11, p. 1190.CrossRefGoogle Scholar
  32. [32]
    Q. Bai, Y. Zuo, X.F. Kong, Y. Gao, S. Dong, and W. Zhang, The influence of the corrosion product layer generated on the high strength low-alloy steels welded by underwater wet welding with stainless steel electrodes in seawater, J. Ocean Univ. China, 16(2017), No. 1, p. 49.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Li-ying Huang
    • 1
    • 2
  • Kuai-she Wang
    • 1
    • 2
    Email author
  • Wen Wang
    • 1
    • 2
    Email author
  • Kai Zhao
    • 1
    • 2
  • Jie Yuan
    • 1
    • 2
  • Ke Qiao
    • 1
    • 2
  • Bing Zhang
    • 1
    • 2
  • Jun Cai
    • 1
    • 2
  1. 1.School of Metallurgical EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.National and Local Joint Engineering Research Center for Functional Materials ProcessingXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations