Influence of microwave treatment on grinding and dissociation characteristics of vanadium titano-magnetite
Abstract
The effect of microwave treatment on the grinding and dissociation characteristics of vanadium titano-magnetite (VTM) ore were investigated using scanning electron microscopy (SEM), nitrogen absorption measurements, particle size distribution measurements, X-ray diffraction (XRD) analysis, Fourier transform infrared (FT-IR) spectroscopic analysis, and magnetic separation. SEM analysis showed that microfractures appeared in the microwave-treated VTM, which is attributed to the microwaves’ selective heating characteristic and the differential expansion between minerals and gangues. Nitrogen absorption showed that the microfractures were more pronounced when the microwave heating time was increased. Particle size distribution analysis showed that microwave treatment could improve the grindability of the VTM, thus increasing the weight percent of the fine-ground product. The increase in grindability was more significant with prolonged heating time. Moreover, the particle size distribution of the fine-ground product changed only slightly after the microwave treatment. XRD analysis showed that the crystallinity of the microwave-treated VTM increased with increasing microwave heating time. The magnetic separation tests revealed that the separation efficiency increased as a result of the intergranular fractures generated by microwave treatment. The Fe grade of the magnetic fraction of microwave-treated VTM was 1.72% higher than that of the raw ore. We concluded that the microwave treatment was beneficial, especially for the mineral processing characteristics.
Keywords
microwave treatment vanadium titano-magnetite grinding microstructure magnetic separationPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
This work was financially supported by the National Natural Science Foundation of China (Nos. 51574082 and 51874077) and the Fundamental Research Funds for the Central University of China (Nos. N150202001 and N172507012).
References
- [1]A.R. Batchelor, D.A. Jones, S. Plint, and S.W. Kingman, Deriving the ideal ore texture for microwave treatment of metalliferous ores, Miner. Eng., 84(2015), p. 116.CrossRefGoogle Scholar
- [2]A. Somani, T.K. Nandi, S.K. Pal, and A.K. Majumder, Pre-treatment of rocks prior to comminution-A critical review of present practices, Int. J. Min. Sci. Technol., 27(2017), No. 2, p. 339.CrossRefGoogle Scholar
- [3]P. Hartlieb, M. Toifl, F. Kuchar, R. Meisels, and T. Antretter, Thermo-physical properties of selected hard rocks and their relation to microwave-assisted comminution, Miner. Eng., 91(2016), p. 34.CrossRefGoogle Scholar
- [4]G.M. Lu, Y.H. Li, F. Hassani, and X.W. Zhang, The influence of microwave irradiation on thermal properties of main rock--forming minerals, Appl. Therm. Eng., 112(2017), p. 1523.CrossRefGoogle Scholar
- [5]W. Zhao, J. Chen, X.D. Chang, S.H. Guo, C. Srinivasakannan, G. Chen, and J.H. Peng, Effect of microwave irradiation on selective heating behavior and magnetic separation characteristics of Panzhihua ilmenite, Appl. Surf. Sci., 300(2014), p. 171.CrossRefGoogle Scholar
- [6]M. Omran, T. Fabritius, A.M. Elmahdy, N.A. Abdel-Khalek, M. El-Aref, and A.E.H. Elmanawi, Effect of microwave pre-treatment on the magnetic properties of iron ore and its implications on magnetic separation, Sep. Purif. Technol., 136(2014), p. 223.CrossRefGoogle Scholar
- [7]T. Jiang, Q.Y. Zhang, Y.J. Liu, X.X. Xue, and P.N. Duan, Influence of microwave irradiation on boron concentrate activation with an emphasis on surface properties, Appl. Surf. Sci., 385(2016), p. 88.CrossRefGoogle Scholar
- [8]V. Rizmanoski, The effect of microwave pretreatment on impact breakage of copper ore, Miner. Eng., 24(2011), No. 14, p. 1609.CrossRefGoogle Scholar
- [9]A.N. Didenko, B.V. Zverev, and A.V. Prokopenko, Microwave fracturing and grinding of solid rocks by example of kimberlite, Dokl. Phys., 50(2005), No. 7, p. 349.CrossRefGoogle Scholar
- [10]Y.M. Yang, J.Z. Liu, X. He, Z.H. Wang, J.H. Zhou, and K.F. Cen, Mechanism underlying the effect of conventional drying on the grinding characteristics of Ximeng lignite, Korean J. Chem. Eng., 34(2017), No. 4, p. 1250.CrossRefGoogle Scholar
- [11]A. Mehdilo and M. Irannajad, Comparison of microwave irradiation and oxidation roasting as pretreatment methods for modification of ilmenite physicochemical properties, J. Ind. Eng. Chem., 33(2016), p. 59.CrossRefGoogle Scholar
- [12]S. Samanli, A comparison of the results obtained from grinding in a stirred media mill lignite coal samples treated with microwave and untreated samples, Fuel, 90(2011), No. 2, p. 659.CrossRefGoogle Scholar
- [13]B.K. Sahoo, S. De, and B.C. Meikap, Improvement of grinding characteristics of Indian coal by microwave pre-treatment, Fuel Process. Technol., 92(2011), No. 10, p. 1920.CrossRefGoogle Scholar
- [14]J.W. Walkiewicz, G. Kazonich, and S.L. McGill, Microwave heating characteristics of selected minerals and compounds, Miner. Metall. Process., 5(1988), No. 1, p. 39.Google Scholar
- [15]Z.Y. Ma, H.Y. Yang, S.T. Huang, Y. Lü, and L. Xiong, Ultra fast microwave-assisted leaching for the recovery of copper and tellurium from copper anode slime, Int. J. Miner. Metall. Mater., 22(2015), No. 6, p. 582.CrossRefGoogle Scholar
- [16]C.B. Zhong, C.L. Xu, R.L. Lyu, Z.Y. Zhang, X.Y. Wu, and R.A. Chi, Enhancing mineral liberation of a Canadian rare earth are with microwave pretreatment, J. Rare Earths, 36(2018), No. 2, p. 215.CrossRefGoogle Scholar
- [17]S.S. Liu, Y.F. Guo, G.Z. Qiu, T. Jiang, and F. Chen, Solid- state reduction kinetics and mechanism of pre-oxidized vanadium-titanium magnetite concentrate, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3372.CrossRefGoogle Scholar
- [18]S.W. Kingman, K. Jackson, S.M. Bradshaw, N.A. Rowson, and R. Greenwood, An investigation into the influence of microwave treatment on mineral ore comminution, Powder Technol., 146(2004), No. 3, p. 176.CrossRefGoogle Scholar
- [19]K.E. Waters, N.A. Rowson, R.W. Greenwood, and A.J. Williams, Characterising the effect of microwave radiation on the magnetic properties of pyrite, Sep. Purif. Technol., 56(2007), No. 1, p. 9.CrossRefGoogle Scholar
- [20]G. Chen, J. Chen, S.H. Guo, J. Li, C. Srinivasakannan, and J.H. Peng, Dissociation behavior and structural of ilmenite ore by microwave irradiation, Appl. Surf. Sci., 258(2012), No. 10, p. 4826.CrossRefGoogle Scholar
- [21]S.H. Guo, G. Chen, J.H. Peng, J. Chen, D.B. Li, and L.J. Liu, Microwave assisted grinding of ilmenite ore, Trans. Nonferrous Met. Soc. China, 21(2011), No. 9, p. 2122.CrossRefGoogle Scholar
- [22]B.K. Sahoo, S. De, and B.C. Meikap, An investigation into the influence of microwave energy on iron ore-water slurry rheology, J. Ind. Eng. Chem., 25(2015), p. 122.CrossRefGoogle Scholar
- [23]H. Park, J.Y. Park, G.H. Kim, and I. Sohn, Effect of TiO2 on the viscosity and slag structure in blast furnace type slags, Steel Res. Int., 83(2012), No. 2, p. 150.CrossRefGoogle Scholar
- [24]P. Kumar, B.K. Sahoo, S. De, D.D. Kar, S. Chakraborty, and B.C. Meikap, Iron ore grindability improvement by microwave pre-treatment, J. Ind. Eng. Chem., 16(2010), No. 5, p. 805.CrossRefGoogle Scholar