Advertisement

Preparation of super-aligned carbon nanotube-reinforced nickel-matrix laminar composites with excellent mechanical properties

  • Ze-cheng Hou
  • Lun-qiao Xiong
  • Yuan-feng Liu
  • Lin Zhu
  • Wen-zhen LiEmail author
Article
  • 24 Downloads

Abstract

A homogeneous and compact super-aligned carbon nanotube (SACNT)-reinforced nickel-matrix composite was successfully prepared by electrodeposition. The mechanical properties of the laminar SACNT/Ni composites were substantially improved compared with those of pure nickel. With increasing content of SACNTs, the tensile strength of the composite increased and the elongation decreased because of the high-strength SACNTs bearing part of an applied load and the fine-grained strengthening mechanism. The nanohardness of the SACNT/Ni composites was improved from 3.92 GPa (pure nickel) to 4.62 GPa (Ni−4vol%SACNTs). The uniform distribution of SACNTs in the composites and strong interfacial bonding between the SACNTs and the nickel matrix resulted in an improvement of the mechanical properties of the SACNT/Ni composites. The introduced SACNTs refined the nickel grains, increased the amount of crystal twins, and changed the preferred orientation of grain growth.

Keywords

nickel-matrix laminar composite super-aligned carbon nanotube electrodeposition mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was partially financially supported by the Tsinghua University Initiative Scientific Research Program (No. 20111080980) and the High Technology Research and Development Program of China (No. 2013AA031201).

References

  1. [1]
    S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon nanotube reinforced metal matrix composites-a review, Int. Metall. Rev., 55(2010), No. 1, p. 41.CrossRefGoogle Scholar
  2. [2]
    E. Zapata-Solvas, D. Gómez-García, and A. Domínguez-Rodríguez, Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites, J. Eur. Ceram. Soc., 32(2012), No. 12, p. 3001.CrossRefGoogle Scholar
  3. [3]
    M. Moniruzzaman and K.I. Winey, Polymer nanocomposites containing carbon nanotubes, Macromolecules, 39(2006), No. 16, p. 5194.CrossRefGoogle Scholar
  4. [4]
    X.Y. Qin, J.S. Lee, J.G. Nam, and B.S. Kim, Synthesis and microstructureal characterization of nanostructured γ-Ni-Fe powder, Nanostruct. Mater., 11(1999), No. 3, p. 383.CrossRefGoogle Scholar
  5. [5]
    C.Y. Chen, J.K. Chang, K.Y. Lin, S.T. Chung, and W.T. Tsai, Enhanced hydrogen storage in MWCNTs decorated by electroless nickel nanoparticles deposited in supercritical CO2 bath, Mater. Sci. Forum, 638–642(2010), p. 1148.CrossRefGoogle Scholar
  6. [6]
    X.H. Chen, D.Y. Li, X.Q. Li, Z.H. Zhang, J.X. Wang, and W.Z. Li, Morphology and wear behavior of Ni-carbon nanotube composite coating, Tribology, 22(2002), No. 1, p. 6.Google Scholar
  7. [7]
    X.H. Chen, C.S. Chen, H.N. Xiao, F.Q. Cheng, G. Zhang, and G.J. Yi, Corrosion behavior of carbon nanotubes-Ni composite coating, Surf. Coat. Technol., 191(2003), No. 2–3, p. 351.Google Scholar
  8. [8]
    X.W. Li, Y. Gu, T. Shi, D. Peng, M.K. Tang, Q.X. Zhang, and X.J. Huang, Preparation of the multi-walled carbon nanotubes/nickel composite coating with superior wear and corrosion resistance, J. Mater. Eng. Perform., 24(2015), No. 12, p. 4656.CrossRefGoogle Scholar
  9. [9]
    S.R. Bakshi, V. Singh, S. Seal, and A. Agarwal, Aluminum composite reinforced with multiwalled carbon nanotubes from plasma spraying of spray dried powders, Surf. Coat. Technol., 203(2009), No. 10–11, p. 1544.CrossRefGoogle Scholar
  10. [10]
    Z. Yang, H. Xu, Y.L. Shi, M.K. Li, Y. Huang, and H.L. Li, The fabrication and corrosion behavior of electroless Ni-P-carbon nanotube composite coatings, Mater. Res. Bull., 40(2005), No. 6, p. 1001.CrossRefGoogle Scholar
  11. [11]
    S. Arai, M. Endo, and N. Kaneko, Ni-deposited multi-walled carbon nanotubes by electrodeposition, Carbon, 42(2004), No. 3, p. 641.CrossRefGoogle Scholar
  12. [12]
    L.Q. Xiong, J. Shuai, Z.C. Hou, L. Zhu, and W.Z. Li, Functionalization of super-aligned carbon nanotube film using hydrogen peroxide solution and its application in copper electrodeposition, J. Colloid Interface Sci., 498(2017), p. 405.CrossRefGoogle Scholar
  13. [13]
    L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, and J.L.S. Wang, Decoration of activated carbon nanotubes with copper and nickel, Carbon, 38(2000), No. 3, p. 363.CrossRefGoogle Scholar
  14. [14]
    R. Karslioglu and H. Akbulut, Comparison microstructure and sliding wear properties of nickel-cobalt/CNT composite coatings by DC, PC and PRC current electrodeposition, Appl. Surf. Sci., 353(2015), p. 615.CrossRefGoogle Scholar
  15. [15]
    C. Guo, Y. Zuo, X.H. Zhao, J.M. Zhao, and J.P. Xiong, Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings, Surf. Coat. Technol., 202(2008), No. 14, p. 3385.CrossRefGoogle Scholar
  16. [16]
    C. Feng, K. Liu, J.S. Wu, L. Liu, J.S. Cheng, Y.Y. Zhang, Y.H. Sun, Q.Q. Li, S.S. Fan, and K.L. Jiang, Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes, Adv. Funct. Mater., 20(2010), No. 6, p. 885.CrossRefGoogle Scholar
  17. [17]
    K. Liu, Y.H. Sun, X.Y. Lin, R.F. Zhou, J.P. Wang, S.S. Fan, and K. Jiang, Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns, ACS Nano, 4(2010), No. 10, p. 5827.CrossRefGoogle Scholar
  18. [18]
    Q.F. Cheng, J.P. Wang, J.J. Wen, C.H. Liu, K.L. Jiang, Q.Q. Li, and S.S. Fan, Carbon nanotube/epoxy composites fabricated by resin transfer molding, Carbon, 48(2010), No. 1, p. 260.CrossRefGoogle Scholar
  19. [19]
    Y. Jin, L. Zhu, W.D. Xue, and W.Z. Li, Fabrication of superaligned carbon nanotubes reinforced copper matrix laminar composite by electrodeposition, Trans. Nonferrous Met. Soc. China, 25(2015), No. 9, p. 2994.CrossRefGoogle Scholar
  20. [20]
    J. Shuai, L.Q. Xiong, L. Zhu, and W.Z. Li, Enhanced strength and excellent transport properties of a super-aligned carbon nanotubes reinforced copper matrix laminar composite, Composites Part A, 88(2016), p. 148.CrossRefGoogle Scholar
  21. [21]
    F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews, Mechanical properties of nanocrystalline nickel produced by electrodeposition, Nanostruct. Mater., 11(1999), No. 3, p. 343.CrossRefGoogle Scholar
  22. [22]
    H.L. Cox, The elasticity and strength of paper and other fibrous materials, Br. J. Appl. Phys., 3(1952), No. 3, p. 72.CrossRefGoogle Scholar
  23. [23]
    S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong, Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Adv. Mater., 17(2005), No. 11, p. 1377.CrossRefGoogle Scholar
  24. [24]
    T. Borkar and S. Harimkar, Microstructure and wear behavior of pulse electrodeposited Ni-CNT composite coatings, Surf. Eng., 27(2013), No. 7, p. 524.CrossRefGoogle Scholar
  25. [25]
    E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. London Sect. B, 64(2002), No. 9, p. 495.Google Scholar
  26. [26]
    H.J. Ryu, S.I. Cha, and S.H. Hong, Generalized shear-lag model for load transfer in SiC/Al metal-matrix composites, J. Mater. Res., 18(2003), No. 12, p. 2851.CrossRefGoogle Scholar
  27. [27]
    A.A.W. Thompson, Yielding in nickel as a function of grain or cell size, Acta Metall., 23(1975), No. 11, p. 1337.CrossRefGoogle Scholar
  28. [28]
    K. Liu, Y.H. Sun, P. Liu, J.P. Wang, Q.Q. Li, S.S. Fan, and K.L. Jiang, Periodically striped films produced from super-aligned carbon nanotube arrays, Nanotechnology, 20(2009), No. 33, p. 335705.CrossRefGoogle Scholar
  29. [29]
    F. Erler, C. Jakob, H. Romanus, L. Spiess, B. Wielage, T. Lampke, and S. Steinhäuser, Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic, Electrochim. Acta, 48(2003), No. 20–22, p. 3063.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ze-cheng Hou
    • 1
  • Lun-qiao Xiong
    • 1
  • Yuan-feng Liu
    • 1
  • Lin Zhu
    • 2
  • Wen-zhen Li
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Tsinghua−Foxconn Nanotechnology Research CenterTsinghua UniversityBeijingChina

Personalised recommendations