Effect of retained austenite and nonmetallic inclusions on the thermal/electrical properties and resistance spot welding nuggets of Si-containing TRIP steels

  • V. H. Vargas
  • I. MejíaEmail author
  • V. H. Baltazar-Hernández
  • C. Maldonado


Five advanced high-strength transformation-induced plasticity (TRIP) steels with different chemical compositions were studied to correlate the retained austenite and nonmetallic inclusion content with their physical properties and the characteristics of the resistance spot welding nuggets. Electrical and thermal properties and equilibrium phases of TRIP steels were predicted using the JMatPro© software. Retained austenite and nonmetallic inclusions were quantified by X-ray diffraction and saturation magnetization techniques. The nonmetallic inclusions were characterized by scanning electron microscopy. The results show that the contents of Si, C, Al, and Mn in TRIP steels increase both the retained austenite and the nonmetallic inclusion contents. We found that nonmetallic inclusions affect the thermal and electrical properties of the TRIP steels and that the differences between these properties tend to result in different cooling rates during the welding process. The results are discussed in terms of the electrical and thermal properties determined from the chemical composition and their impact on the resistance spot welding nuggets.


transformation-induced plasticity steel retained austenite non-metallic inclusions magnetic saturation electrical properties thermal properties resistance spot welding nugget 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Authors would like to thank the Coordinación de la Investigación Científica (CIC) of the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH-México) for the support during this project (CIC-UMSNH-1.8). V.H. Vargas’ studies were sponsored by the National Council on Science and Technology (Consejo Nacional de Ciencia y Tecnología-México) and would like to thank for the support during this project N.B. 254928.


  1. [1]
    A. Grajcar, M. Rózanski, M. Kaminska, and B. Grzegorczyk, Study on non-metallic inclusions in laser-welded TRIP-aided Nb-microalloyed steel, Arch. Metall. Mater., 59(2014), No. 3, p. 1163.CrossRefGoogle Scholar
  2. [2]
    L.I. Lin, B.C. De Cooman, R.D. Liu, J. Vleugels, M. Zhang, and S.H. Wen, Design of TRIP steel with high welding and galvanizing performance in light of thermodynamics and kinetics, J. Iron Steel Res. Int., 14(2007), No. 6, p. 37.CrossRefGoogle Scholar
  3. [3]
    A. Mohamadizadeh, A. Zarei-Hanzaki, S. Mehtonen, D. Porter, and M. Moallemi, Effect of intercritical thermomechanical processing on austenite retention and mechanical properties in a multiphase TRIP-assisted steel, Metall. Mater. Trans. A, 47(2016), No. 1, p. 436.CrossRefGoogle Scholar
  4. [4]
    H.L. Yi, Review on d-transformation-induced plasticity (TRIP) steels with low density: the concept and current progress, JOM, 66(2014), No. 9, p. 1759.CrossRefGoogle Scholar
  5. [5]
    M. Pouranvari and S.P.H. Marashi, Critical review of automotive steels spot welding: process, structure and properties, Sci. Technol. Weld. Joining, 18(2013), No. 5, p. 361.CrossRefGoogle Scholar
  6. [6]
    K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, and P. Veyssière, Encyclopedia of Materials: Science and Technology, Elsevier, Michigan, 2001, p. 4807.Google Scholar
  7. [7]
    B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials, 2nd ed., Wiley-IEEE Press, New Jersey, 2008.CrossRefGoogle Scholar
  8. [8]
    M. Amirthalingam, M.J.M. Hermans, L. Zhao, and I.M. Richardson, Quantitative analysis of microstructural constituents in welded transformation-induced-plasticity steels, Metall. Mater. Trans. A, 41(2009), No. 431, p. 430.Google Scholar
  9. [9]
    M. Amirthalingam, M. Hermans, and I.M. Richardson, Microstructural development during welding of silicon and aluminum based transformation induced plasticity steels?inclusion and elemental partitioning analysis, Metall. Mater. Trans. A, 40(2009), No. 901, p. 901.CrossRefGoogle Scholar
  10. [10]
    E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay, Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels, Mater. Charact., 40(1998), No. 2, p. 111.CrossRefGoogle Scholar
  11. [11]
    L. Zhao, N.H. van Dijk, E. Brück, J. Sietsma, and S. van der Zwaag, Magnetic and X-ray diffraction measurements for the determination of retained austenite in TRIP steels, Mater. Sci. Eng. A, 313(2000), No. 1–2, p. 145.Google Scholar
  12. [12]
    M. Soliman, B. Weidenfeller, and H. Palkowski, Metallurgical phenomena during processing of cold rolled trip steel, Steel Res. Int., 80(2009), No. 1, p. 57.Google Scholar
  13. [13]
    O. Matsumura, Y. Sakuma, and H. Takechi, Enhancement of elongation by retained austenite in intercritical annealed 0.4C-1.5Si-0.8Mn steel, Trans. Iron Steel Inst. Jpn., 27(1987), No. 7, p. 570.CrossRefGoogle Scholar
  14. [14]
    G. Azizi, H. Mirzadeh, and M.H. Parsa, Dependency of deformation behavior of retained austenite in TRIP steels on microstructural and chemical homogeneity, Acta Metall. Sin. Engl. Lett., 28(2015), No. 10, p. 1272.CrossRefGoogle Scholar
  15. [15]
    H.X. Yin, A.M. Zhao, Z.Z. Zhao, X. Li, S.J. Li, H.J. Hu, and W.G. Xia, Influence of original microstructure on the transformation behavior and mechanical properties of ultra-high-strength TRIP-aided steel, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 262.CrossRefGoogle Scholar
  16. [16]
    Z. Li, D. Wu, and J.X. Liu, Effects of austempering on the mechanical properties of the hot rolled Si-Mn TRIP steels, J. Wuhan Univ. Technol., 21(2006), No. 3, p. 21.CrossRefGoogle Scholar
  17. [17]
    I. Tsukatani, S. Hashimoto, and T. Inoue, Effect of silicon and manganese addition on mechanical properties of high-strength hot-rolled sheet steel containing retained austenite, ISIJ Int., 31(1991), No. 9, p. 992.CrossRefGoogle Scholar
  18. [18]
    J.R. Green and D. Margerison, Statistical Treatment of Experimental Data, P.T. Tomkins, eds., Elsevier, Amsterdam, 1978.Google Scholar
  19. [19]
    A.J. DeArdo, C.I. Garcia, K. Cho, and M. Hua, New method of characterizing and quantifying complex microstructures in steels, Mater. Manuf. Processes, 25(2010), No. 1–3, p. 33.CrossRefGoogle Scholar
  20. [20]
    S. Han, H. Seong, Y. Ahn, C.I. Garcia, A.J. DeArdo, and I. Kim, Effect of alloying elements and coiling temperature on the recrystallization behavior and the bainitic transformation in TRIP steels, Met. Mater. Int., 15(2009), No. 4, p. 521.CrossRefGoogle Scholar
  21. [21]
    M. Radu, J. Valy, A.F. Gourgues, F. Le Strat, and A. Pineau, Continuous magnetic method for quantitative monitoring of martensitic transformation in steels containing metastable austenite, Scripta Mater., 52(2005), No. 6, p. 525.CrossRefGoogle Scholar
  22. [22]
    M.B. Karimi, H. Arabi, A. Khosravani, and J. Samei, Effect of rolling strain on transformation induced plasticity of austenite to martensite in high-alloy austenitic steel, J. Mater. Process. Technol., 203(2008), No. 1–3, p. 349.CrossRefGoogle Scholar
  23. [23]
    A.A. Shatsov and M.G. Latypov, Role of nickel and carbon in concentration-inhomogeneous trip steels, Met. Sci. Heat Treat., 43(2001), No. 5–6, p. 248.CrossRefGoogle Scholar
  24. [24]
    P.J. Jacques, S. Allain, O. Bouaziz, A. De, A.F. Gourgues, B.M. Hance, Y. Houbaert, J. Huang, A. Iza-Mendia, S.E. Kruger, M. Radu, L. Samek, J. Speer, L. Zhao, and S. van der Zwaag, On the measurement of retained austenite in multiphase TRIP steels?results of blind round robin test involving six different technique, Mater. Sci. Technol., 25(2009), No. 5, p. 567.CrossRefGoogle Scholar
  25. [25]
    S. Berveiller, K. Inal, R. Kubler, A. Eberhardt, and E. Patoor, Experimental approach of the martensitic transformation in shape-memory alloys and TRIP steels, J. Phys. IV, 115(2004), p. 261.Google Scholar
  26. [26]
    M. Gomez, C.I. Garcia, and A.J. Deardo, The role of new ferrite on retained austenite stabilization in Al-TRIP steels, ISIJ Int., 50(2010), No. 1, p. 139.CrossRefGoogle Scholar
  27. [27]
    D. Jandová, R. Divišová, L. Skálová, and J. Drnek, Refinement of steel microstructure by free forging, J. Achiev. Mater. Manuf. Eng., 16(2006), No. 1–2, p. 17.Google Scholar
  28. [28]
    J. Hidalgo, K.O. Findley, and M.J. Santofimia, Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering, Mater. Sci. Eng. A, 690(2017), No. 6, p. 337.CrossRefGoogle Scholar
  29. [29]
    S.S.M. Tavares, S.R. Mello, A.M. Gomes, J.M. Neto, M.R. da Silva, and J.M. Pardal, X-ray diffraction and magnetic characterization of the retained austenite in a chromium alloyed high carbon steel, J. Mater. Sci., 41(2005), No. 15, p. 4732.CrossRefGoogle Scholar
  30. [30]
    R.E. Hummel, Electronic Properties of Materials, Springer, New York, 2011.CrossRefGoogle Scholar
  31. [31]
    D.S. Petrovic, Non-oriented electrical steel sheets, Mater. Technol., 44(2010), No. 6, p. 317.Google Scholar
  32. [32]
    J. Barros, T. Ros-Yañez, L. Vandenbossche, L. Dupré, J. Melkebeek, and Y. Houbaert, The effect of Si and Al concentration gradients on the mechanical and magnetic properties of electrical steel, J. Magn. Magn. Mater., 290–291(2005), p. 1457.CrossRefGoogle Scholar
  33. [33]
    K. Jenkins and M. Lindenmo, Precipitates in electrical steels, J. Magn. Magn. Mater., 320(2008), No. 20. p. 2423.CrossRefGoogle Scholar
  34. [34]
    H. Oikawa, G. Murayama, T. Sakiyama, Y. Takahashi, and T. Ishikawa, Resistance spot weldability of high strength steel (HSS) sheets for automobiles, Nippon Steel Technical Report, No. 95, p. 39.Google Scholar
  35. [35]
    D. Pereira, T. Clarke, R. Menezes, and T. Hirsch, Effect of microstructure on the electrical conductivity of Inconel 718 alloys, Mater. Sci. Technol., 31(2015), No. 6, p. 669.CrossRefGoogle Scholar
  36. [36]
    P. Beckley and J.E. Thompson, Influence of inclusions on domain-wall motion and power loss in oriented electrical steel, Proc. Inst. Electr. Eng., 117(1970), No. 11, p. 2194.CrossRefGoogle Scholar
  37. [37]
    M.F. Littmann, Iron and silicon-iron alloys, IEEE Trans. Magn. 7(1971), No. 1, p. 48.Google Scholar
  38. [38]
    T.L. Bergman, A.S. Lavine, F.P. Incropera, and D.P. DeWitt, Fundamentals of Heat and Mass Transfer, Wiley & Sons, Hoboken, N.J., 2007, p. 70.Google Scholar
  39. [39]
    H. Ghazanfari and M. Naderi, Expulsion characterization in resistance spot welding by means of a hardness mapping technique, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 894.CrossRefGoogle Scholar
  40. [40]
    N. den Uijl, Resistance spot welding of a complicated joint in new advanced high strength steel, [in] Proceedings of the 6th International Seminar on Advances in Resistance Welding, Hamburg, 2010.Google Scholar
  41. [41]
    A. Grajcar, M. Kaminska, U. Galisz, L. Bulkowski, M. Opiela, and P. Skrzypczyk, Modification of non-metallic inclusions in high-strength steels containing increased Mn and Al contents, J. Achiev. Mater. Manuf. Eng., 55(2012), No. 2, p. 245.Google Scholar
  42. [42]
    N.J. den Uijl, Thermal and electrical resistance in resistance spot welding, [in] Proceedings of the 17th International Conference on Computer Technology in Welding and Manufacturing, Cranfield, 2008.Google Scholar
  43. [43]
    M. Pouranvari, H.R. Asgari, S.M. Mosavizadch, P.H. Marashi, and M. Goodarzi, Effect of weld nugget size on overload failure mode of resistance spot welds, Sci. Technol. Weld. Joining, 12(2007), No. 3, p. 217.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • V. H. Vargas
    • 1
  • I. Mejía
    • 1
    Email author
  • V. H. Baltazar-Hernández
    • 2
  • C. Maldonado
    • 1
  1. 1.Metallurgy and Materials Research InstituteUniversidad Michoacana de San Nicolás de Hidalgo, Edificio “U”, Ciudad UniversitariaMoreliaMéxico
  2. 2.Materials Science and Engineering ProgramAutonomous University of ZacatecasZacatecasMéxico

Personalised recommendations