Advertisement

Leaching kinetics of celestite in nitric acid solutions

  • Feray KocanEmail author
  • Umran Hicsonmez
Article
  • 37 Downloads

Abstract

In this study, strontium nitrate extraction from celestite in nitric acid solutions was investigated using the leaching method. The influences of acid concentration, solid-to-liquid ratio, stirring speed, and reaction temperature on the leaching of strontium from celestite concentrate were studied. The results showed that the leaching rate increased with increasing acid concentration, stirring speed, and temperature and decreased with increasing solid-to-liquid ratio. The particle size was fixed in all of the dissolution experiments. The results showed that the stirring speed and the temperature were the most influential parameters with respect to the leaching process. The kinetic model best fit control by diffusion through the product layer. The activation energy of the dissolution celestite in nitric acid solutions was calculated to be 42.22 kJ/mol.

Keywords

dissolution hydrometallurgy leaching kinetics separation strontium nitrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the Science Research Project Committee of Manisa Celal Bayar University (No. BAP 2013-101).

References

  1. [1]
    S. Chegrouche, A. Mellah, and M. Barkat, Removal of strontium from aqueous solutions by adsorption onto activated carbon, Desalination, 235(2009), No. 1–3, p. 306.CrossRefGoogle Scholar
  2. [2]
    M.R. Palmer, C. Helvaci, and A.E. Fallick, Sulphur, sulphate oxygen and strontium isotope composition of Cenozoic Turkish evaporates, Chem. Geol., 209(2004), No. 3–4, p. 341.CrossRefGoogle Scholar
  3. [3]
    P.W. Harben and M. Kuzvart, Industrial Minerals: A Global Geology, Industrial Minerals Information Ltd, London, 1996.Google Scholar
  4. [4]
    J.P. Macmillan, J.W. Park, R. Gerstenberg, H. Wagner, K. Köhler, and P. Wallbrecht, Strontium and Strontium Compounds, John Wiley & Sons, New York, 2012.Google Scholar
  5. [5]
    R.O. Ajemba and O.D. Onukwuli, Dissolution kinetics and mechanisms of reaction of Udi clay in nitric acid solution, Am. J. Sci. Ind. Res., 3(2012), No. 3, p. 115.Google Scholar
  6. [6]
    K. Liddell, T. Newton, M.D. Adams, and B. Muller, Energy consumption for Kell hydrometallurgical refining versus conventional pyrometallurgical smelting and refining of PGM concentrates, J. South Afr. Inst. Min. Metall., 111(2011), No. 2, p. 127.Google Scholar
  7. [7]
    S. Aydogan, M. Erdemoglu, A.A. Aras, G. Uçar, and A. Özkan, Dissolution kinetics of celestite (SrSO4) in HCl solution with BaCl2, Hydrometallurgy, 84(2006), No. 3–4, p. 239.CrossRefGoogle Scholar
  8. [8]
    M. Erdemoglu, M. Sarikaya, and M. Canbazoglu, Leaching of celestite with sodium sulfide, J. Dispersion Sci. Technol., 27(2006), No. 4 p. 439.CrossRefGoogle Scholar
  9. [9]
    R. Suárez-Orduña, J.C. Rendón-Angeles, and K. Yanagisawa, Kinetic study of the conversion of mineral celestite to strontianite under alkaline hydrothermal conditions, Int. J. Miner. Process., 83(2007), No. 1–2, p. 12.CrossRefGoogle Scholar
  10. [10]
    D. Bingol, S. Aydogan, and S.S. Gultekin, Neural model for the leaching of celestite in sodium carbonate solution, Chem. Eng. J., 165(2010), No. 2, p. 617.CrossRefGoogle Scholar
  11. [11]
    I.U. Ermis, Production of Ammonium Sulfate and Strontium Carbonate via Leaching Methods From Strontium Sulfate Concentrate [Dissertation], T.C. Selcuk University of Science and Technology Institute, Konya, 2011.Google Scholar
  12. [12]
    M. Zoraga and C. Kahruman, Kinetics of conversion of celestite to strontium carbonate in solutions containing carbonate, bicarbonate and ammonium ions, and dissolved ammonia, J. Serb. Chem. Soc., 79(2014), No. 3, p. 345.CrossRefGoogle Scholar
  13. [13]
    F. De Buda, Method for Recovery and Conversion of Strontium Sulphate to Strontium Carbonate from Low and Medium Grade Celestite Ores, US Patent, Appl.US4666688A, 1987.Google Scholar
  14. [14]
    F. Kocan and U. Hicsonmez, Leaching of celestite in sodium hydroxide solutions and kinetic modelling, J. Dispersion Sci. Technol., 2018. https://doi.org/10.1080/01932691.2018.1464466.Google Scholar
  15. [15]
    S.Y. Qin, B.W. Yin, Y.F. Zhang, and Y. Zhang, Leaching kinetics of szaibelyite ore in NaOH solution, Hydrometallurgy, 157(2015), p. 333.CrossRefGoogle Scholar
  16. [16]
    Y.F. Zhang, J.Y. Ma, Y.H. Qin, J.F. Zhou, L. Yang, Z.K. Wu, T.L. Wang, W.G. Wang, and C.W. Wang, Ultrasound-assisted leaching of potassium from phosphorus-potassium associated ore, Hydrometallurgy, 166(2016), p. 237.CrossRefGoogle Scholar
  17. [17]
    D.D. Wu, S.M. Wen, and J.S. Deng, Leaching kinetics of cerrusite using a new complexation reaction reagent, New J. Chem., 39(2015), No. 3, p. 1922.CrossRefGoogle Scholar
  18. [18]
    A. Künkül, A. Gülezgin, and N. Demirkiran, Investigation of the use of ammonium acetate as an alternative lixiviant in the leaching of malachite ore, Chem. Ind. Chem. Eng. Q., 19(2013), No. 1, p. 25.CrossRefGoogle Scholar
  19. [19]
    Z.I. Zafar, Determination of semi empirical kinetic model for dissolution of bauxite ore with sulfuric acid: Parametric cumulative effect on the Arrhenius parameters, Chem. Eng. J., 141(2008), No. 1–3, p. 233.CrossRefGoogle Scholar
  20. [20]
    M. Iwai and J.M. Toguri, The leaching of celestite in sodium carbonate solution, Hydrometallurgy, 22(1989), No. 1–2, p. 87.CrossRefGoogle Scholar
  21. [21]
    A.H.E. Castillejos, F.P.B. de la Cruz del, and A.S. Uribe, The direct conversion of celestite to strontium carbonate in sodium carbonate aqueous media, Hydrometallurgy, 40(1996), No. 1–2, p. 207.CrossRefGoogle Scholar
  22. [22]
    S.S. Behera and P.K. Parhi, Leaching kinetics study of neodymium from the scrap magnet using acetic acid, Sep. Purif. Technol. 160(2016), p. 59.CrossRefGoogle Scholar
  23. [23]
    Q.C. Feng, S.M. Wen, W.J. Zhao, X. Bai, and Y. Chen, Dissolution of smithsonite in methane sulfonic acid, Russ. J. Non-ferrous Met., 56(2015), No. 4, p. 365.CrossRefGoogle Scholar
  24. [24]
    Q.C. Feng, S.M. Wen, Y.J. Wang, W.J. Zhao, J.S. Deng, Investigation of leaching kinetics of cerussite in sodium hydroxide solutions, Physicochem. Prob. Miner. Process., 51(2015), No. 2, p. 491.Google Scholar
  25. [25]
    S. Espiari, F. Rashchi, and S.K. Sadrnezhaad, Hydrometallurgical treatment of tailings with high zinc content, Hydrometallurgy, 82(2006), No. 1–2, p. 54.CrossRefGoogle Scholar
  26. [26]
    A. Ekmekyapar, N. Demirkiran, A. Künkül, and E. Aktas, Leaching of malachite ore in ammonium sulfate solutions and production of copper oxide, Braz. J. Chem. Eng., 32(2015), No. 1, p. 155.CrossRefGoogle Scholar
  27. [27]
    W. Astuti, T. Hirajima, K. Sasaki, and N. Okibe, Comparison of atmospheric citric acid leaching kinetics of nickel from different Indonesian saprolitic ores, Hydrometallurgy, 161(2016), p. 138.CrossRefGoogle Scholar
  28. [28]
    O. Levenspiel, Chemical Reaction Engineering, John Wiley & Sons, New York, 1999.Google Scholar
  29. [29]
    T. Rosenqvist, Principles of Extractive Metallurgy, McGraw-Hill Book Company, New York, 1980.Google Scholar
  30. [30]
    C. Bilal, The Reaction Kinetics of Colemanite with Sulfuric Acid [Dissertation], Technical University, Istanbul, 2003.Google Scholar
  31. [31]
    H.L. Hosgun, Dissolution Kinetics of Aluminum from Kaolin in HCl and NaOH Solutions [Dissertation], Osmangazi University, Eskisehir, 1996.Google Scholar
  32. [32]
    M. Kandilcik, Dissolution Kinetics of Tincal Mineral in Ammonium Sulfate Solutions [Dissertation], Yuzuncu Yil University, Van, 2013.Google Scholar
  33. [33]
    A. Aran, Materials Science Lecture Notes [Dissertation], Istanbul Technical University, Istanbul, 2008.Google Scholar
  34. [34]
    F.R.P. Carrillo, A.S. Uribe, and A.H.E. Castillejos, A laboratory study of the leaching of celestite in a Pachuca tank, Miner. Eng., 8(1995), No. 4–5, p. 495.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Arts and Sciences, Chemistry DepartmentManisa Celal Bayar UniversityManisaTurkey

Personalised recommendations