Advertisement

Microstructure and mechanical properties of friction-stir welded St52 steel joints

  • Tevfik Küçükömeroğlu
  • Semih M. Aktarer
  • Güven İpekoğlu
  • Gürel Çam
Article
  • 7 Downloads

Abstract

The aim of this work is to investigate the mechanical properties and microstructures of friction-stir welded (FSWed) St52 structural steel joints. In this study, St52 steel plates with a thickness of 4 mm were butt-welded by friction-stir welding (FSW) using a tungsten carbide tool having a conical pin. The microstructure of the welded zone consists of equiaxed fine ferrite, grain boundary ferrite, Widmanstatten ferrite, and aggregates of ferrite + cementite. The microhardness measurements showed that the hardness of the welded zone was significantly higher than that of the base metal. The FSWed St52 joint exhibited a significant strength overmatching in the weld region and a strength performance similar to or slightly higher than that of the base plate.

Keywords

friction-stir welding St52 steel microstructure mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.M.N. Thomas, E.D. Nicholas, C. Needham, M.G. Murch, P. Templesmith, and C.J. Dawes, Friction Stir Butt Welding, Int. Patent Appl. PCT/GB92/02203 and GB Patent Appl. 9125978.8, 1991, and US Patent Appl. 5460317, 1995.Google Scholar
  2. [2]
    R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng. R, (50)2005, No. 1–2, p. 1.CrossRefGoogle Scholar
  3. [3]
    G. Çam and G. İpekoğlu, Recent developments in joining of aluminium alloys, Int. J. Adv. Manuf. Technol., 91(2017), No. 5–8, p. 1851.CrossRefGoogle Scholar
  4. [4]
    G. Çam, Friction stir welded structural materials: beyond Al–alloys, Int. Mater. Rev., 56(2011), No. 1, p. 1.CrossRefGoogle Scholar
  5. [5]
    G. Çam, G. İpekoğlu, T. Küçükömeroğlu, and S.M. Aktarer, Applicability of friction stir welding to steels, J. Achv. Mater. Manuf. Eng., 80(2017), No. 2, p. 65.Google Scholar
  6. [6]
    R. Nandan, T. DebRoy, and H.K.D.H. Bhadeshia, Recent advances in friction–stir welding–Process, weldment structure and properties, Prog. Mater. Sci., 53(2008), No. 6, p. 980.CrossRefGoogle Scholar
  7. [7]
    J.A. Esparza, W.C. Davis, E.A. Trillo, and L.E. Murr, Friction–stir welding of magnesium alloy AZ31B, J. Mater. Sci. Lett., 21(2002), No. 12, p. 917.CrossRefGoogle Scholar
  8. [8]
    S. Rajakumar, A. Razalrose, and V. Balasubramanian, Friction stir welding of AZ61A magnesium alloy, Int. J. Adv. Manuf. Technol., 68(2013), No. 1–4, p. 277.CrossRefGoogle Scholar
  9. [9]
    Y. Templeman, G.B. Hamu, and L. Meshi, Friction stir welded AM50 and AZ31Mg alloys: Microstructural evolution and improved corrosion resistance, Mater. Charact., 126(2017), p. 86.CrossRefGoogle Scholar
  10. [10]
    W.M. Thomas, P.L. Threadgill, and E.D. Nicholas, Feasibility of friction stir welding steel, Sci. Technol. Weld. Joining, 4(1999), No. 6, p. 365.CrossRefGoogle Scholar
  11. [11]
    M. Jafari, M. Abbasi, D. Poursina, A. Gheysarian, and B. Bagheri, Microstructures and mechanical properties of friction stir welded dissimilar steel–copper joints, J. Mech. Sci. Technol., 31(2017), No. 3, p. 1135.CrossRefGoogle Scholar
  12. [12]
    F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Techol., (34)2018, No. 1, p. 39.Google Scholar
  13. [13]
    H.H. Liu and H. Fujii, Microstructural and mechanical properties of a beta–type titanium alloy joint fabricated by friction stir welding, Mater. Sci. Eng. A, 711(2018), p. 140.CrossRefGoogle Scholar
  14. [14]
    S. Mironov, Y.S. Sato, and H. Kokawa, Friction–stir welding and processing of Ti−6Al−4V titanium alloy: A review, J. Mater. Sci. Techol., 34(2018), No. 1, p. 58.CrossRefGoogle Scholar
  15. [15]
    P. Edwards and M. Ramulu, Fatigue performance of friction stir welded titanium structural joints, Int. J. Fatigue, 70(2015), p. 171.CrossRefGoogle Scholar
  16. [16]
    H. Fujii, L. Cui, N. Tsuji, M. Maeda, K. Nakata, and K. Nogi, Friction stir welding of carbon steels, Mater. Sci. Eng. A, 429(2006), No. 1–2, p. 50.CrossRefGoogle Scholar
  17. [17]
    T.J. Lienert, W.L. Stellwag, B.B. Grimmett, and R.W. Warke, Friction stir welding studies on mild steel − Process results, microstructures, and mechanical properties are reported, Weld. J., 82(2003), No. 1, p. 1–S.CrossRefGoogle Scholar
  18. [18]
    L. Cui, H. Fujii, N. Tsuji, and K. Nogi, Friction stir welding of a high carbon steel, Scripta Mater., 56(2007), No. 7, p. 637.CrossRefGoogle Scholar
  19. [19]
    M. Imam, R. Ueji, and H. Fujii, Microstructural control and mechanical properties in friction stir welding of medium carbon low alloy S45C steel, Mater. Sci. Eng. A, 636(2015), p. 24.CrossRefGoogle Scholar
  20. [20]
    H. Fujii, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, and K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Mater. Trans., 47(2006), No. 1, p. 239.CrossRefGoogle Scholar
  21. [21]
    L.F. Cui, H. Fujii, N. Tsuji, K. Nakata, K. Nogi, R. Ikeda, and M. Matsushita, Transformation in stir zone of friction stir welded carbon steels with different carbon contents, ISIJ Int., 47(2007), No. 2, p. 299.CrossRefGoogle Scholar
  22. [22]
    A.J. Ozekcin, H.W. Jin, J.Y. Koo, N.V. Bangaru, R. Ayer, G. Vaughn, R. Steel, and S. Packer, A microstructural study of friction stir welded joints of carbon steels, Int. J. Offshore Polar Eng., 14(2004). No. 4, p. 284.Google Scholar
  23. [23]
    D.H. Choi, C.Y. Lee, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Effect of fixed location variation in friction stir welding of steels with different carbon contents, Sci. Technol. Weld. Joining, 15(2010), No. 4, p. 299.CrossRefGoogle Scholar
  24. [24]
    D.H. Choi, B.W. Ahn, Y.M. Yeon, S.H.C. Park, Y.S. Sato, H. Kokowa, and S.B. Jung, Microstructural characterizations following friction stir welding of dissimilar alloys of low–and high–carbon steels, Mater. Trans., 52(2011), No. 7, p. 1500.CrossRefGoogle Scholar
  25. [25]
    P.L. Threadgill, Terminology in friction stir welding, Sci. Technol. Weld. Joining, 12(2007), No. 4, p. 357.CrossRefGoogle Scholar
  26. [26]
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin, The effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferrite–martensite dual phase steel sheets, Mater. Sci. Eng. A, 518(2009), No. 1–2, p. 1.CrossRefGoogle Scholar
  27. [27]
    G. Thewlis, Classification and quantification of microstructures in steels, Mater. Sci. Techol., 20(2004), No. 2, p. 143.CrossRefGoogle Scholar
  28. [28]
    M. Jafarzadegan, A.H. Feng, A. Abdollah–zadeh, T. Saeid, J. Shen, and H. Assadi, Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and St37 steel, Mater. Charact., 74(2012), p. 28.CrossRefGoogle Scholar
  29. [29]
    G. Çam, Ç. Yeni, S. Erim, V. Ventzke, and M. Koçak, Investigation into properties of laser welded similar and dissimilar steel joints, Sci. Technol. Weld. Joining, 3(1998), No. 4, p. 177.CrossRefGoogle Scholar
  30. [30]
    G. Çam, G. İpekoğlu, and H.T. Serindağ, Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061–T6 joints, Sci. Technol. Weld. Joining, 19(2014), No. 8, p. 715.CrossRefGoogle Scholar
  31. [31]
    G. İpekoğlu, S. Erim, and G. Çam, Investigation into the influence of post–weld heat treatment on the friction stir welded AA6061 Al–alloy plates with different temper conditions, Metall. Mater. Trans. A, 45(2014), No. 2, p. 864.Google Scholar
  32. [32]
    G. İpekoğlu, S. Erim, B. G. Kıral, and G. Çam, Investigation into the effect of temper condition on friction stir weldability of AA6061 Al–alloy plates, Kovove Mater., 51(2013), No. 3, p. 155.Google Scholar
  33. [33]
    G. İpekoğlu, B.G. Kıral, S. Erim, and G. Çam, Investigation of the effect of temper condition on friction stir weldability of AA7075 Al–alloy plates, Mater. Tehnol., 46(2012), No. 6, p. 627.Google Scholar
  34. [34]
    G. Çam, S. Güçlüer, A. Çakan, and H.T. Serindağ, Mechanical properties of friction stir butt–welded Al–5086H32 plate, Materialwiss. Werkstofftech., 40(2009), No. 8, p. 638.CrossRefGoogle Scholar
  35. [35]
    G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, P. Gonthier–Maurin, M. Penasa, and C. Rivezla, Characterization of laser and electron beam welded Al–alloys, Prakt. Metallogr., 37(2000), No. 2, p. 59.Google Scholar
  36. [36]
    G. Çam, V. Ventzke, J.F. Dos Santos, M. Koçak, G. Jennequin, and P. Gonthier–Maurin, Characterisation of electron beam welded aluminium alloys, Sci. Technol. Weld. Joining, 4(1999), No. 5, p. 317.CrossRefGoogle Scholar
  37. [37]
    T. Küçükömeroğlu, E. Şentürk, L. Kara, G. İpekoğlu, and G. Çam, Microstructural and mechanical properties of friction stir welded nickel–aluminum bronze (NAB) alloy, J. Mater. Eng. Perform., 25(2016,) No. 1, p. 320.Google Scholar
  38. [38]
    G. Çam, S. Mistikoglu, and M. Pakdil, Microstructural and mechanical characterization of friction stir butt joint welded 63%Cu−37%Zn brass plate, Weld. J., 88(2009), No. 11, p. 225S.Google Scholar
  39. [39]
    G. Çam, H.T. Serindag, A. Çakan, S. Mistikoglu, and H. Yavuz, The effect of weld parameters on friction stir welding of brass plates, Materialwiss. Werkstofftech., 39(2008), No. 6, p. 394.CrossRefGoogle Scholar
  40. [40]
    X.C. He, F.S. Gu, and A. Ball, A review of numerical analysis of friction stir welding, Prog. Mater. Sci., 65(2014), p. 1.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Tevfik Küçükömeroğlu
    • 1
  • Semih M. Aktarer
    • 2
  • Güven İpekoğlu
    • 3
  • Gürel Çam
    • 3
  1. 1.Department of Mechanical EngineeringKaradeniz Technical UniversityTrabzonTurkey
  2. 2.Department of Automotive TechnologyRecep Tayyip Erdogan UniversityRizeTurkey
  3. 3.Department of Mechanical EngineeringIskenderun Technical UniversityHatayTurkey

Personalised recommendations