Effect of melting temperature on microstructural evolutions, behavior and corrosion morphology of Hadfield austenitic manganese steel in the casting process

  • Masoud SabziEmail author
  • Sadegh Moeini Far
  • Saeid Mersagh Dezfuli


In this study, the effect of melting temperature on the microstructural evolutions, behavior, and corrosion morphology of Hadfield steel in the casting process is investigated. The mold was prepared by the sodium silicate/CO2 method, using a blind riser, and then the desired molten steel was obtained using a coreless induction furnace. The casting was performed at melting temperatures of 1350, 1400, 1450, and 1500°C, and the cast blocks were immediately quenched in water. Optical microscopy was used to analyze the microstructure, and scanning electron microscopy (SEM) and X-ray diffractrometry (XRD) were used to analyze the corrosion morphology and phase formation in the microstructure, respectively. The corrosion behavior of the samples was analyzed using a potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS) in 3.5wt% NaCl. The optical microscopy observations and XRD patterns show that the increase in melting temperature led to a decrease of carbides and an increase in the austenite grain size in the Hadfield steel microstructure. The corrosion tests results show that with increasing melting temperature in the casting process, Hadfield steel shows a higher corrosion resistance. The SEM images of the corrosion morphologies show that the reduction of melting temperature in the Hadfield steel casting process induced micro-galvanic corrosion conditions.


Hadfield steel casting process melting temperature microstructural evolutions corrosion behavior corrosion morphology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. Ma, C. Huang, K. Dolman, X.H. Tang, J.J. Yang, Z. Shi, and Z.S. Liu, A method to calculate the bulk hardness of metal matrix composite using Hadfield steel reinforced with niobium carbide particles as an example, Mech. Mater., 112(2017), p. 154.CrossRefGoogle Scholar
  2. [2]
    C. Chen, X.Y. Feng, B. Lv, Z.N. Yang, and F.C. Zhang, A study on aging carbide precipitation behavior of hadfield steel by dynamic elastic modulus, Mater. Sci. Eng. A, 677(2016), p. 446.CrossRefGoogle Scholar
  3. [3]
    D.V. Lychagin, A.V. Filippov, O.S. Novitskaia, Y.I. Chumlyakov, E.A. Kolubaev, and O.V. Sizova, Friction–induced slip band relief of–Hadfield steel single crystal oriented for multiple slip deformation, Wear, 374(2017), p. 5.CrossRefGoogle Scholar
  4. [4]
    C. Chen, F.C. Zhang, F. Wang, H. Liu, and B.D. Yu, Effect of N+Cr alloying on the microstructures and tensile properties of Hadfield steel, Mater. Sci. Eng. A, 679(2017), p. 95.CrossRefGoogle Scholar
  5. [5]
    S.F. Gnyusov, V.P. Rotshtein, A.E. Mayer, E.G. Astafurova, V.V. Rostov, A.V. Gunin, and G.G. Maier, Comparative study of shock–wave hardening and substructure evolution of 304L and Hadfield steels irradiated with a nanosecond relativistic high–current electron beam, J. Alloys Compd., 714(2017), p. 232.CrossRefGoogle Scholar
  6. [6]
    J.T. Horng and K.T. Chiang, A grey and fuzzy algorithms integrated approach to the optimization of turning Hadfield steel with Al2O3/TiC mixed ceramic tool, J. Mater. Process. Technol., 207(2008), No. 1–3, p. 89.CrossRefGoogle Scholar
  7. [7]
    I. Mejía, A.E. Salas–Reyes, J. Calvo, and J.M. Cabrera, Effect of Ti and B microadditions on the hot ductility behavior of a high–Mn austenitic Fe−23Mn−1.5Al−1.3Si−0.5C TWIP steel, Mater. Sci. Eng. A, 648(2015), p. 311.CrossRefGoogle Scholar
  8. [8]
    D. Siafakas, T. Matsushita, Å. Lauenstein, S. Ekero, and A.E.W. Jarfors, A particle population analysis in Ti–and Al–deoxidized Hadfield steels, Int. J. Cast Met. Res., 31(2018), No. 3, p. 125.CrossRefGoogle Scholar
  9. [9]
    A.K. Srivastava and K. Das, In–situ synthesis and characterization of TiC–reinforced Hadfield manganese austenitic steel matrix composite, ISIJ Int., 49(2009), No. 9, p. 1372.CrossRefGoogle Scholar
  10. [10]
    A.K. Srivastava, K. Das, and S.K. Toor, Corrosion behaviour of TiC–reinforced Hadfield manganese austenitic steel matrix in–situ composites, Open J. Met. 5(2015), No. 2, p. 11.Google Scholar
  11. [11]
    X.Y. Feng, F.C. Zhang, Z.N. Yang, and M. Zhang, Wear behaviour of nanocrystallised Hadfield steel, Wear, 305(2013), No. 1–2, p. 299.CrossRefGoogle Scholar
  12. [12]
    G.S. Zhang, J.D. Xing, and Y.M. Gao, Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear, 260(2006), No. 7–8, p. 728.CrossRefGoogle Scholar
  13. [13]
    W.L. Yan, L. Fang, K. Sun, and Y.H. Xu, Effect of surface work hardening on wear behavior of Hadfield steel, Mater. Sci. Eng. A, 460(2007), p. 542.CrossRefGoogle Scholar
  14. [14]
    Y.N. Dastur and W.C. Leslie, Mechanism of work hardening in Hadfield manganese steel, Metall. Trans. A, 12(1981), No. 5, p. 749.CrossRefGoogle Scholar
  15. [15]
    S. Hofer, M. Hartl, G. Schestak, R. Schneider, E. Arenholz, and L. Samek, Comparison of austenitic high–Mn–steels with different Mn–and C–contents regarding their processing properties, BHM Berg–Huttenmann. Monatsh., 156(2011), No. 3, p. 99.Google Scholar
  16. [16]
    S.M. Anijdan, M. Sabzi, M. Ghobeiti–Hasab, and A. Roshan–Ghiyas, Optimization of spot welding process parameters in dissimilar joint of dual phase steel DP600 and AISI 304 stainless steel to achieve the highest level of shear–tensile strength, Mater. Sci. Eng. A, 726(2018), p. 120.CrossRefGoogle Scholar
  17. [17]
    C. Iglesias, I.G. Solórzano, and B.J. Schulz, Effect of low nitrogen content on work hardening and microstructural evolution in Hadfield steel, Mater Charact., 60(2009), No. 9, p. 971.CrossRefGoogle Scholar
  18. [18]
    T. Kıvak, Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts, Measurement, 50(2014), p. 19.CrossRefGoogle Scholar
  19. [19]
    E. Bayraktar, F.A. Khalid, and C. Levaillant, Deformation and fracture behaviour of high manganese austenitic steel, J. Mater. Process. Technol., 147(2004), No. 2, p. 145.CrossRefGoogle Scholar
  20. [20]
    D. Canadinc, H. Sehitoglu, and H.J. Maier, The role of dense dislocation walls on the deformation response of aluminum alloyed Hadfield steel polycrystals, Mater. Sci. Eng. A, 454(2007), p. 662.CrossRefGoogle Scholar
  21. [21]
    S.H.M. Anijdan and M. Sabzi, The evolution of microstructure of an high Ni HSLA X100 forged steel slab by thermomechanical controlled processing, [in] TMS Annual Meeting & Exhibition, Cham, 2018, p. 145.Google Scholar
  22. [22]
    I. Karaman, H. Sehitoglu, Y.I. Chumlyakov, H.J. Maier, and I.V. Kireeva, Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals, Scr. Mater., 44(2001), No. 2, p. 337.CrossRefGoogle Scholar
  23. [23]
    D. Canadinc, H. Sehitoglu, H.J. Maier, and Y.I. Chumlyakov, Strain hardening behavior of aluminum alloyed Hadfield steel single crystals, Acta Mater., 53(2005), No. 6, p. 1831.CrossRefGoogle Scholar
  24. [24]
    M. Sabzi, A. Obeydavi, and S.H.M. Anijdan, The effect of joint shape geometry on the microstructural evolution, fracture toughness, and corrosion behavior of the welded joints of a Hadfield steel, Mech. Adv. Mater. Struct., (2018), p. 1. Scholar
  25. [25]
    S. Hosseini and M.B. Limooei, Optimization of heat treatment to obtain desired mechanical properties of high carbon Hadfield steels, World Appl. Sci. J., 15(2011), No. 10, p. 1421.Google Scholar
  26. [26]
    S. Hosseini, M.B. Limooei, M.H. Zade, E. Askarnia, and Z. Asadi, Optimization of heat treatment due to austenising temperature, time and quenching solution in Hadfield steels, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng., 7(2013), No. 7, p. 582.Google Scholar
  27. [27]
    I.U.H. Toor, Effect of Mn content and solution annealing temperature on the corrosion resistance of stainless steel alloys, J. Chem., 2014(2014), p. 1.CrossRefGoogle Scholar
  28. [28]
    Y.K. Lee and C.S. Choi, Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe−Mn binary system, Metall. Mater. Trans. A, 31(2000), No. 2, p. 355.CrossRefGoogle Scholar
  29. [29]
    T.E. Abioye, P.K. Farayibi, D.G. McCartney, and A.T. Clare, Effect of carbide dissolution on the corrosion performance of tungsten carbide reinforced Inconel 625 wire laser coating, J. Mater. Process. Technol., 231(2016), p. 89.CrossRefGoogle Scholar
  30. [30]
    S.H.M. Anijdan, M. Sabzi, M.R. Zadeh, and M. Farzam, The effect of electroless bath parameters and heat treatment on the properties of Ni−P and Ni−P−Cu composite coatings, Mater. Res., 21(2018), No. 2, p. 1.CrossRefGoogle Scholar
  31. [31]
    J. Li, J.S. Wu, Z. Wang, S.Q. Zhang, X.G. Wu, Y.H. Huang, and X.G. Li, The effect of nanosized NbC precipitates on electrochemical corrosion behavior of high–strength low–alloy steel in 3.5% NaCl solution, Int. J. Hydrogen Energy, 42(2017), No. 34, p. 22175.CrossRefGoogle Scholar
  32. [32]
    J. Sanchez, J. Fullea, and C. Andrade, Corrosion–induced brittle failure in reinforcing steel, Theor. Appl. Fract. Mech., 92(2017), p. 229.CrossRefGoogle Scholar
  33. [33]
    T.R. Tamilarasan, U. Sanjith, M.S. Shankar, and G. Rajagopal, Effect of reduced graphene oxide (rGO) on corrosion and erosion–corrosion behaviour of electroless Ni−P coatings, Wear, 390 (2017), p. 385.Google Scholar
  34. [34]
    D.J. Blackwood, C.S. Lim, S.L.M. Teo, X.P. Hu, and J.J. Pang, Macrofouling induced localized corrosion of stainless steel in Singapore seawater, Corros. Sci., 129(2017), p. 152.CrossRefGoogle Scholar
  35. [35]
    J.H. Hong, S.H. Lee, J.G. Kim, and J.B. Yoon, Corrosion behaviour of copper containing low alloy steels in sulphuric acid, Corros. Sci., 54(2012), p. 174.CrossRefGoogle Scholar
  36. [36]
    R.Q. Hou, C.Q. Ye, C.D. Chen, S.G. Dong, M.Q. Lv, S. Zhang, J.S. Pan, G.L. Song, and C.J. Lin, Localized corrosion of binary Mg−Ca alloy in 0.9wt% sodium chloride solution, Acta Metall. Sinica (Engl. Lett.), 29(2016), No. 1, p. 46.CrossRefGoogle Scholar
  37. [37]
    M.L.C. Lim, R.G. Kelly, and J.R. Scully, Overview of intergranular corrosion mechanisms, phenomenological observations, and modeling of AA5083, Corros. Sci., 72(2016), No. 2, p. 198.Google Scholar
  38. [38]
    M. Sabzi, S.H.M. Anijdan, and M. Asadian, The effect of substrate temperature on microstructural evolution and hardenability of tungsten carbide coating in hot filament chemical vapor deposition, Int. J. Appl. Ceram. Technol., 15(2018), No. 6, p. 1350.CrossRefGoogle Scholar
  39. [39]
    S.M. Dezfuli and M. Sabzi, A study on the effect of presence of CeO2 and benzotriazole on activation of self–healing mechanism in ZrO2 ceramic–based coating, Int. J. Appl. Ceram. Technol., 15(2018), No. 5, p. 1248.CrossRefGoogle Scholar
  40. [40]
    M. Sabzi, S.H.M. Anijdan, M.R. Zadeh, and M. Farzam, The effect of heat treatment on corrosion behaviour of Ni−P−3 gr/lit Cu nano–composite coating, Can. Metall. Q., 57(2018), No. 3, p. 350.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Masoud Sabzi
    • 1
    Email author
  • Sadegh Moeini Far
    • 2
  • Saeid Mersagh Dezfuli
    • 3
  1. 1.Young Researchers and Elite Club, Dezful BranchIslamic Azad UniversityDezfulIran
  2. 2.Department of Mechanical EngineeringIslamic Azad UniversityShushtarIran
  3. 3.Department of Materials Science and EngineeringIslamic Azad UniversityTehranIran

Personalised recommendations