Sintering study of Ti6Al4V powders with different particle sizes and their mechanical properties

  • José Luis Cabezas-Villa
  • José Lemus-Ruiz
  • Didier Bouvard
  • Omar Jiménez
  • Héctor Javier Vergara-Hernández
  • Luis OlmosEmail author


Ti6Al4V powders with three different particle size distributions (0–20, 20–45, and 45–75 μm) were used to evaluate the effect of the particle size distribution on the solid-state sintering and their mechanical properties. The sintering kinetics was determined by dilatometry at temperatures from 900 to 1260°C. The mechanical properties of the sintered samples were evaluated by microhardness and compression tests. The sintering kinetics indicated that the predominant mechanism depends on the relative density irrespective of the particle size used. The mechanical properties of the sintered samples are adversely affected by increasing pore volume fraction. The elastic Young’s modulus and yield stress follow a power law function of the relative density. The fracture behavior after compression is linked to the neck size developed during sintering, exhibiting two different mechanisms of failure: interparticle neck breaking and intergranular cracking in samples with relative densities below and above of 90%, respectively. The main conclusion is that relative density is responsible for the kinetics, mechanical properties, and failure behavior of Ti6Al4V powders.


Ti6Al4V powders dilatometry microhardness sintering kinetics compression failure behavior 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors would like to thank to Coordination of Scientific Research of the University Michoacana of San Nicolás of Hidalgo (UMSNH), the National Laboratory SEDEAM-National Council for Science and Technology (CONACYT) and ECOS M15P01 for the financial support and the facilities to develop this study.


  1. [1]
    C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley–VCH, Weinheim, 2003, p. 1.CrossRefGoogle Scholar
  2. [2]
    I. Montealegre–Meléndez, E. Neubauer, and H. Danninger, Effect of starting powder grade on sintering and properties of PM titanium metal matrix composites, Powder Metall., 52(2009), No. 4, p. 322.CrossRefGoogle Scholar
  3. [3]
    E. Benavente–Martínez, F. Devesa, and V. Amigó, Caracterización mecánica de aleaciones Ti–Nb mediante ensayos de flexión biaxial, Rev. Metal., 46(2010), p. 19.CrossRefGoogle Scholar
  4. [4]
    D. Banerjee and J.C. Williams, Perspectives on titanium science and technology, Acta Mater., 61(2013), No. 3, p. 844.CrossRefGoogle Scholar
  5. [5]
    L. Reig, V. Amigó, D.J. Busquets, and J.A. Calero, Development of porous Ti6Al4V samples by microsphere sintering, J. Mater. Process. Technol., 212(2012), No. 1, p. 3.CrossRefGoogle Scholar
  6. [6]
    D.M. Brunette, P. Tengvall, M. Textor, and P. Thomsen, Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, Springer Science and Business Media, New York, 2013, p. 1.Google Scholar
  7. [7]
    M. Yan and P. Yu, An Overview of Densification, Microstructure and Mechanical Property of Additively Manufactured Ti–6Al–4V ― Comparison Among Selective Laser Melting, Electron Beam Melting, Laser Metal Ddeposition and Selective Laser Sintering, and with Conventional Powder, Sintering Techniques of Materials, InTech, London, 2015, p. 77.Google Scholar
  8. [8]
    Z.Q. Yan, F. Chen, Y.X. Cai, and Y.N. Jian, Influence of particle size on property of Ti–6Al–4V alloy prepared by high–velocity compaction, Trans. Nonferrous Met. Soc. China, 23(2013), No. 2, p. 361.CrossRefGoogle Scholar
  9. [9]
    Y.J. Yan, G.L. Nash, and P. Nash, Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V, Int. J. Fatigue, 55(2013), p. 81.CrossRefGoogle Scholar
  10. [10]
    H.P. Ng, C. Haase, R. Lapovok, and Y. Estrin, Improving sinterability of Ti–6Al–4V from blended elemental powders through equal channel angular pressing, Mater. Sci. Eng. A, 565(2013), p. 396.CrossRefGoogle Scholar
  11. [11]
    Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, and J.J. Pavón, Processing, characterization and biological testing of porous titanium obtained by space–holder technique, J. Mater. Sci., 47(2012), No. 18, p. 6565.CrossRefGoogle Scholar
  12. [12]
    L. Yan, H.Y. Zhang, T. Wang, X.L. Huang, Y.Y. Li, J.S. Wu, and H.B. Chen, High–strength Ti–6Al–4V with ultrafine–grained structure fabricated by high energy ball milling and spark plasma sintering, Mater. Sci. Eng. A, 585(2013), p. 408.CrossRefGoogle Scholar
  13. [13]
    L. Xu, R.P. Guo, C.G. Bai, J.F. Lei, and R. Yang, Effect of isostatic pressing conditions and cooling rate on microstructure and properties of Ti–6Al–4V alloy from atomized powder, J. Mater. Sci. Technol., 30(2014), No. 12, p. 1289.CrossRefGoogle Scholar
  14. [14]
    V. Amigó, M.D. Salvador, F. Romero, C. Solves, and J.F. Moreno, Microestructural evolution of Ti–6Al–4V during the sintering of microspheres of Ti for orthopedic implants, J. Mater. Process. Technol., 141(2003), No. 1, p. 117.CrossRefGoogle Scholar
  15. [15]
    L.E. Murr, E.V. Esquivel, S.A. Quinones, S.M. Gaytan, M.I. Lopez, E.Y. Martinez, F. Medina, D.H. Hernandez, E. Martinez, J.L. Martinez, S.W. Stafford, D.K. Brown, T. Hoppe, W. Meyers, U. Lindhe, and R.B. Wicker, Microstructures and mechanical properties of electron beam–rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V, Mater. Charact., 60(2009), No. 2, p. 96.CrossRefGoogle Scholar
  16. [16]
    N.W. Hrabe, P. Heinl, B. Flinn, C. Körner, and R.K. Bordia, Compressioncompression fatigue of selective electron beam melted cellular titanium (Ti–6Al–4V), J. Biomed. Mater. Res. Part B, 99(2011), No. 2, p. 313.CrossRefGoogle Scholar
  17. [17]
    L. Bolzoni, T. Weissgaerber, B. Kieback, E.M. Ruiz–Navas, and E. Gordo, Mechanical behavior of pressed and sintered CP Ti and Ti–6Al–7Nb alloy obtained from master alloy addition powder, J. Mech. Behav. Biomed. Mater., 20(2013), p. 149.CrossRefGoogle Scholar
  18. [18]
    R.M. German, Sintering Theory and Practice, John Wiley and Sons, New York, USA, 1996, p. 100.Google Scholar
  19. [19]
    H. Bayat, M. Rastgo, M.M. Zadeh, and H. Vereecken, Particle size distribution models, their characteristics and fitting capability, J. Hydrol., 529(2015), p. 872.CrossRefGoogle Scholar
  20. [20]
    S.S. Razavi–Tousi, R. Yazdani–Rad, and S.A. Manafi, Effect of volume fraction and particle size of alumina reinforcement on compaction and densification behavior of Al–Al2O3 nanocomposites, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1105.CrossRefGoogle Scholar
  21. [21]
    W. Chen, Y. Yamamoto, W.H. Peter, M.B. Clark, S.D. Nunn, J.O. Kiggans, T.R. Muth, C.A. Blue, J.C. Williams, and K. Akhtar, The investigation of die–pressing and sintering behavior of ITP CP–Ti and Ti–6Al–4V powders, J. Alloys Compd., 541(2012), p. 440.CrossRefGoogle Scholar
  22. [22]
    R. Lapovok, D. Tomus, and B.C. Muddle, Low–temperature compaction of Ti–6Al–4V powder equal channel angular extrusion with back pressure, Mater. Sci. Eng. A, 490(2008), No. 1–2, p. 171.CrossRefGoogle Scholar
  23. [23]
    X.Y. Xu and P. Nash, Sintering mechanisms of Armstrong prealloyed Ti–6Al–4V powders, Mater. Sci. Eng. A, 607(2014), p. 409.CrossRefGoogle Scholar
  24. [24]
    O.M. Ivasishin, D.G. Savvakin, F. Froes, V.C. Mokson, and K.A. Bondareva, Synthesis of alloy Ti–6Al–4V with low residual porosity by a powder metallurgy method, Powder Metall. Met. Ceram., 41(2002), No. 7–8, p. 382.CrossRefGoogle Scholar
  25. [25]
    D.F. Khan, H.Q. Yin, H. Li, X.H. Qu, M. Khan, S. Ali, and M.Z. Iqbal, Compaction of Ti–6Al–4V powder using high velocity compaction technique, Mater. Des., 50(2013), p. 479.CrossRefGoogle Scholar
  26. [26]
    M. P. I. Federation, Standard Test Methods for Metal Powders and Powder Metallurgy Products, Metal Powder Industries Federation, Princeton, 2002, p. 1.Google Scholar
  27. [27]
    M. Dewidar, Microstructure and mechanical properties of biocompatible high density Ti–6Al–4V/W produced by high frequency induction heating sintering, Mater. Des., 31(2010), No. 8, p. 3964.CrossRefGoogle Scholar
  28. [28]
    X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, and R.B. Wicker, Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting, J. Mech. Behav. Biomed. Mater., 16(2012), p. 153.CrossRefGoogle Scholar
  29. [29]
    L. Bolzoni, E.M. Ruiz–Navas, and E. Gordo. Feasibility study of the production of biomedical Ti–6Al–4V alloy by powder metallurgy, Mater. Sci. Eng. C, 49(2015), p. 400.Google Scholar
  30. [30]
    J. Chávez, L. Olmos, O. Jiménez, D. Bouvard, E. Rodríguez, and M. Florers, Sintering behaviour and mechanical characterisation of Ti64/xTiN composites and bilayer components, Powder Metall., 60(2017), No. 4, p. 257.CrossRefGoogle Scholar
  31. [31]
    B.B. Panigrahi, M.M. Godkhindi, K. Das, P.G. Mukunda, and P. Ramakrishnan, Sintering kinetics of micrometric titanium powder, Mater. Sci. Eng. A, 396(2005), No. 1–2, p. 255.CrossRefGoogle Scholar
  32. [32]
    Y. Kim, Y.B. Song, S.H. Lee, and Y.S. Kwon, Characterization of the hot deformation behavior and microstructural evolution of Ti–6Al–4V sintered performs using materials modeling techniques, J. Alloys Compd., 676(2016), p. 15.CrossRefGoogle Scholar
  33. [33]
    J. Wang and R. Raj, Estimate of the activation energies for boundary diffusion from rate–controlled sintering of pure alumina, and alumina doped with zirconia or Titania, J. Am. Ceram. Soc., 73(1990), No. 5, p. 1172.CrossRefGoogle Scholar
  34. [34]
    Y. Mishin and C. Herzig, Diffusion in the Ti–Al system, Acta Mater., 48(2000), No. 3, p. 589.CrossRefGoogle Scholar
  35. [35]
    A.E. Pontau and D. Lazarus, Diffusion of titanium and niobium in bcc Ti–Nb alloys, Phys. Rev. B: Condens. Matter, 19(1979), No. 8, p. 4027.CrossRefGoogle Scholar
  36. [36]
    M. Köppers, C. Herzig, M. Friesel, and Y. Mishin, Intrinsic self–diffusion and substitutional Al diffusion in α–Ti, Acta Mater., 45(1997), No. 10, p. 4181.CrossRefGoogle Scholar
  37. [37]
    G. Neumann, V. Tölle, and C. Tuijn, On the impurity diffusion in β–Ti, Physica B, 296(2001), No. 4, p. 334.CrossRefGoogle Scholar
  38. [38]
    I.M. Robertson and G.B. Schaffer, Some effects of particle size on the sintering of titanium and a master sintering curve model, Metall. Mater. Trans. A, 40(2009), No. 8, p. 1968.CrossRefGoogle Scholar
  39. [39]
    C. Herzig, T. Wilger, T. Przeorski, F. Hisker, and S. Divinski, Titanium tracer diffusion in grain boundaries of α–Ti, α2–Ti3Al, and γ–TiAl and in α2/γ interphase boundaries, Intermetallics, 9(2001), No. 5, p. 431.CrossRefGoogle Scholar
  40. [40]
    F.B. Swinkels and M.F. Ashby, A second report on sintering diagrams, Acta Metal., 29(1981), No. 2, p. 259.CrossRefGoogle Scholar
  41. [41]
    S.J.L. Kang and Y.I. Jung, Sintering kinetics at final stage sintering: model calculation and map construction, Acta Mater., 52(2004), No. 15, p. 4573.CrossRefGoogle Scholar
  42. [42]
    R.M. German, The sintering of 304L stainless steel powder. Metall. Trans. A, 7(1976), No. 12, p. 1879.CrossRefGoogle Scholar
  43. [43]
    Y. Torres, S. Lascano, J. Bris, J. Pavón, and J.A. Rodriguez, Development of porous titanium for biomedical applications: A comparison between loose sintering and space–holder techniques, Mater. Sci. Eng. C, 37(2014), p. 148.CrossRefGoogle Scholar
  44. [44]
    J. Kováčik, The tensile behavior of porous metals made by GASAR process, Acta Mater., 46(1998), No. 15, p. 5413.CrossRefGoogle Scholar
  45. [45]
    J. Kováčik, Correlation between Young’s modulus and porosity in porous materials, J. Mater. Sci. Lett., 18(1999), No. 13, p. 1007.CrossRefGoogle Scholar
  46. [46]
    L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999, p. 52.Google Scholar
  47. [47]
    C. Simoneau, V. Brailovski, and P. Terriault, Design, manufacture and tensile properties of stochastic porous metallic structures, Mech. Mater., 94(2016), p. 26.CrossRefGoogle Scholar
  48. [48]
    L.F. Nielsen, Elasticity and damping of porous materials and impregnated materials, J. Am. Ceram. Soc., 67(1984), No. 2, p. 93.CrossRefGoogle Scholar
  49. [49]
    R.M. German, Sintering: From Empirical Observations to Scientific Principles, Butterworth–Heinemann Elsevier Ltd, Oxford, 2014, p. 141.CrossRefGoogle Scholar
  50. [50]
    A. Taşdemirci, A. Hızal, M. Altındiş, I.W. Hall, and M. Gü den, The effect of strain rate on the compressive deformation behavior of a sintered Ti6Al4V powder compact, Mater. Sci. Eng. A, 474(2008), No. 1–2, p. 335.CrossRefGoogle Scholar
  51. [51]
    M.E. Dizlek, M. Guden, U. Turkan, and A. Tasdemirci, Processing compression testing of Ti6Al4V foams for biomedical applications, J. Mater. Sci., 44(2009), No. 6, p. 1512.CrossRefGoogle Scholar
  52. [52]
    D. Eylon, F.H. Froes, D.G. Heggie, P.A. Blenkinsop, and R.W. Gardiner, Influence of thermomechanical processing on low cycle fatigue of prealloyed Ti–6Al–4V powder compacts, Metall. Trans. A, 14(1983), No. 12, p. 2497.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • José Luis Cabezas-Villa
    • 1
  • José Lemus-Ruiz
    • 1
  • Didier Bouvard
    • 2
  • Omar Jiménez
    • 3
  • Héctor Javier Vergara-Hernández
    • 4
  • Luis Olmos
    • 5
    Email author
  1. 1.University Michoacana of San Nicolás of Hidalgo, IIMMMoreliaMéxico
  2. 2.University Grenoble Alpes, CNRS, SIMaPGrenobleFrance
  3. 3.University of Guadalajara, Departamento de Ingeniería de ProyectosZapopanMéxico
  4. 4.National Technological Institute of Mexico, I. T. MoreliaMoreliaMéxico
  5. 5.University Michoacana of San Nicolás of Hidalgo, INICITMoreliaMéxico

Personalised recommendations