Advertisement

Effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy

  • Xiao-feng Wang
  • Ming-xing Guo
  • Cun-qiang Ma
  • Jian-bin Chen
  • Ji-shan Zhang
  • Lin-zhong Zhuang
Article

Abstract

The effect of particle size distribution on the microstructure, texture, and mechanical properties of Al–Mg–Si–Cu alloy was investigated on the basis of the mechanical properties, microstructure, and texture of the alloy. The results show that the particle size distribution influences the microstructure and the final mechanical properties but only slightly influences the recrystallization texture. After the pre-aging treatment and natural aging treatment (T4P treatment), in contrast to the sheet with a uniform particle size distribution, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids exhibits higher strength and a somewhat lower plastic strain ratio (r) and strain hardening exponent (n). After solution treatment, the sheet with a bimodal particle size distribution of large constituent particles and small dispersoids possesses a finer and slightly elongated grain structure compared with the sheet with a uniform particle size distribution. Additionally, they possess almost identical weak recrystallization textures, and their textures are dominated by CubeND {001}<310> and P {011}<122> orientations.

Keywords

Al–Mg–Si–Cu alloy microstructure texture particle mechanical property 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFB0300801), the National Natural Science Foundation of China (No. 51571023), Zhejiang Provincial Natural Science Foundation of China (No. LQ17E010001), the Beijing Municipal Natural Science Foundation (No. 2172038), and the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation (No. FRF-SD-B-005B). This work was also sponsored by the K. C. Wong Magna Fund in Ningbo University.

References

  1. [1]
    J. Hirsch and T. Al-Samman, Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., 61(2013), No. 3, p. 818.CrossRefGoogle Scholar
  2. [2]
    J. Hirsch, Recent development in aluminium for automotive applications, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 1995.CrossRefGoogle Scholar
  3. [3]
    Y.H. Cai, C. Wang, and J.S. Zhang, Microstructural characteristics and aging response of Zn-containing Al–Mg–Si–Cu alloy, Int. J. Miner. Metall. Mater., 20(2013), No. 7, p. 659.CrossRefGoogle Scholar
  4. [4]
    C.Y. Liu, P.F. Yu, X.Y. Wang, M.Z. Ma, and R.P. Liu, Preparation of high-strength Al–Mg–Si–Cu–Fe alloy via heat treatment and rolling, Int. J. Miner. Metall. Mater., 21(2014), No. 7, p. 702.CrossRefGoogle Scholar
  5. [5]
    J. Sidor, A. Miroux, R. Petrov, and L. Kestens, Controlling the plastic anisotropy in asymmetrically rolled aluminium sheets, Philos. Mag., 88(2008), No. 30–32, p. 3779.CrossRefGoogle Scholar
  6. [6]
    J. Sidor, R.H. Petrov, and L.A.I. Kestens, Deformation, recrystallization and plastic anisotropy of asymmetrically rolled aluminum sheets, Mater. Sci. Eng. A, 528(2010), No. 1, p. 413.CrossRefGoogle Scholar
  7. [7]
    X.F. Wang, M.X. Guo, L.Y. Cao, F. Wang, J.S. Zhang, and L.Z. Zhuang, Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al–Mg–Si alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 738.CrossRefGoogle Scholar
  8. [8]
    C.S.T. Chang, A.S.C. Yeung, and B.J. Duggan, Producing a random recrystallization texture in 6111 aluminum alloy, Mater. Sci. Forum, 495–497(2005), p. 591.CrossRefGoogle Scholar
  9. [9]
    H. Inoue and T. Takasugi, Texture control for improving deep drawability in rolled and annealed aluminum alloy sheets, Mater. Trans., 48(2007), No. 8, p. 2014.CrossRefGoogle Scholar
  10. [10]
    X.F. Wang, M.X. Guo, A. Chaupis, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Effect of solution time on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys, Mater. Sci. Eng. A, 644(2015), p. 137.CrossRefGoogle Scholar
  11. [11]
    H. Inoue, T. Yamasaki, G. Gottstein, P. van Houtte, and T. Takasugi, Recrystallization texture and r-value of rolled and T4-treated Al–Mg–Si alloy sheets, Mater. Sci. Forum, 495–497(2005), p. 573.CrossRefGoogle Scholar
  12. [12]
    X.F. Wang, M.X. Guo, J.S. Zhang, and L.Z. Zhuang, Effect of Zn addition on the microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloys, Mater. Sci. Eng. A, 677(2016), p. 522.CrossRefGoogle Scholar
  13. [13]
    X.F. Wang, M.X. Guo, J.R. Luo, J. Zhu, J.S. Zhang, and L.Z. Zhuang, Effect of Zn on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys with a medium number of Fe-rich phase particles, Mater. Charact., 134(2017), p. 123.CrossRefGoogle Scholar
  14. [14]
    X.F. Wang, M.X. Guo, A. Chaupis, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, The dependence of final microstructure, texture evolution and mechanical properties of Al−Mg−Si−Cu alloy sheets on the intermediate annealing, Mater. Sci. Eng. A, 633(2015), p. 46.CrossRefGoogle Scholar
  15. [15]
    X.F. Wang, M.X. Guo, Y. Zhang, H. Xing, Y. Li, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, The dependence of microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheet on final cold rolling deformation, J. Alloys Compd., 657(2016), p. 906.CrossRefGoogle Scholar
  16. [16]
    X.F. Wang, M.X. Guo, L.Y. Cao, J.R. Luo, J.S. Zhang, and L.Z. Zhuang, Effect of heating rate on mechanical property, microstructure and texture evolution of Al–Mg–Si–Cu alloy during solution treatment, Mater. Sci. Eng. A, 621(2015), p. 8.CrossRefGoogle Scholar
  17. [17]
    E. Di Russo, M. Conserva, F. Gatto, and H. Markus, Thermomechanical treatments on high strength Al–Zn–Mg(–Cu) alloys, Metall. Trans., 4(2015), No. 4, p. 1133.CrossRefGoogle Scholar
  18. [18]
    L.P. Troeger and E.A. Starke Jr, Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy, Mater. Sci. Eng. A, 293(2000), No. 1–2, p. 19.CrossRefGoogle Scholar
  19. [19]
    W.C. Liu and J.G. Morris, Comparison of the texture evolution in cold rolled DC and SC AA 5182 aluminum alloys, Mater. Sci. Eng. A, 339(2003), No. 1–2, p. 183.CrossRefGoogle Scholar
  20. [20]
    W.C. Liu and J.G. Morris, Kinetics of the formation of the β fiber rolling texture in continuous cast AA 5xxx series aluminum alloys, Scripta Mater., 47(2002), No. 11, p. 743.CrossRefGoogle Scholar
  21. [21]
    F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd Ed., Elsevier Ltd., Oxford, 2004, p. 114.Google Scholar
  22. [22]
    O. Engler and K. Lücke, Mechanisms of recrystallization texture formation in aluminium alloys, Scripta Metall. Mater., 27(1997), No. 11, p. 1527.CrossRefGoogle Scholar
  23. [23]
    O. Engler, Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis, Mater. Sci. Technol., 12(1996), No. 10, p. 859.CrossRefGoogle Scholar
  24. [24]
    O. Engler, On the influence of orientation pinning on growth selection of recrystallisation, Acta Mater., 46(1998), No. 5, p. 1555.CrossRefGoogle Scholar
  25. [25]
    Y.S. Liu, S.B. Kang, and H.S. KO, Texture and plastic anisotropy of Al–Mg–0.3Cu–1.0Zn alloys, Scripta Mater., 37(1997), No. 4, p. 411.CrossRefGoogle Scholar
  26. [26]
    L. Delannay, M.A. Melchior, J.W. Signorelli, J.-F. Remacle, and T. Kuwabara, Influence of grain shape on the planar anisostropy of rolled steel sheets-evaluation of three models, Comput. Mater. Sci., 45(2009), No. 3, p. 739.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiao-feng Wang
    • 1
  • Ming-xing Guo
    • 2
  • Cun-qiang Ma
    • 3
  • Jian-bin Chen
    • 1
  • Ji-shan Zhang
    • 2
  • Lin-zhong Zhuang
    • 2
  1. 1.The Faculty of Mechanical Engineering and MechanicsNingbo UniversityNingboChina
  2. 2.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  3. 3.Capital Aerospace Machinery CompanyBeijingChina

Personalised recommendations