Advertisement

Microstructure refinement and work hardening in a machined surface layer induced by turning Inconel 718 super alloy

  • Xiao-ping Ren
  • Zhan-qiang Liu
Article
  • 78 Downloads

Abstract

The microstructural changes in the machined surface layer of Ni-based super alloys essentially determine the final performance of the structural components of aerospace engines in which these alloys are used. In this work, multiscale metallurgical observations using scanning electron microscopy, electron-backscatter diffraction microscopy, and transmission electron microscopy were conducted to quantitatively characterize the microstructure of the machined subsurface. Next, to elucidate the factors that affect the formation of the refinement microstructure, the distributions of the deformation parameters (strain, strain rate, and temperature) in the machined subsurface were analyzed. A dislocation-twin interaction dynamic recrystallization mechanism for grain refinement during machining of Inconel 718 is proposed. Furthermore, microhardness evolution induced by grain refinement in the machined surface is evaluated. The results suggest that the gradient microstructure and the work hardening can be optimized by controlling the cutting parameters during turning of Inconel 718.

Keywords

grain refinement dislocation-twin interaction work hardening turning Inconel 718 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 51425503) and the Major Science and Technology Program of High-end CNC Machine Tools and Basic Manufacturing Equipment of China (No. 2014ZX04012014). This work was also supported by a grant from the Taishan Scholar Foundation of Shandong province (No. TS20130922).

References

  1. [1]
    A. Thakur and S. Gangopadhyay, State-of-the-art in surface integrity in machining of nickel-based super alloys, Int. J. Mach. Tools Manuf., 100(2016), p. 25.CrossRefGoogle Scholar
  2. [2]
    D. Ulutan and T. Ozel, Machining induced surface integrity in titanium and nickel alloys: A review, Int. J. Mach. Tools Manuf., 51(2011), No. 3, p. 250.CrossRefGoogle Scholar
  3. [3]
    I.S. Jawahir, E. Brinksmeier, R.M'Saoubi, D.K. Aspinwall, J.C. Outeiro, D. Meyer, D. Umbrello, and A.D. Jayal, Surface integrity in material removal processes: Recent advances, CIRP Ann., 60(2011), p. 603.CrossRefGoogle Scholar
  4. [4]
    C.W. Dai, W.F. Ding, J.H. Xu, C. Ding, and G.Q. Huang, Investigation on size effect of grain wear behavior during grinding nickel-based superalloy Inconel 718, Int. J. Adv. Manuf. Technol., 91(2017), No. 5–8, p. 2907.CrossRefGoogle Scholar
  5. [5]
    W.F. Ding, L.C. Zhang, Z. Li, Y.J. Zhu, H.H. Su, and J.H. Xu, Review on grinding-induced residual stresses in metallic materials, Int. J. Adv. Manuf. Technol., 88(2017), No. 9–12, p. 2939.CrossRefGoogle Scholar
  6. [6]
    W.F. Ding, B. Linke, Y.J. Zhu, Z. Li, Y.C. Fu, H.H. Su, and J.H. Xu, Review on monolayer CBN superabrasive wheels for grinding metallic materials, Chin. J. Aeronaut., 30(2017), No. 1, p. 109.CrossRefGoogle Scholar
  7. [7]
    R. M'Saoubi, T. Larsson, J. Outeiro, Y. Guo, S. Suslov, C. Saldana, and S. Chandrasekar, Surface integrity analysis of machined Inconel 718 over multiple length scales, CIRP Ann., 61(2012), No. 1, p. 99.CrossRefGoogle Scholar
  8. [8]
    J. Gubicza, L. Farbaniec, G. Csiszár, T. Sadat, H. Couque, and G. Dirras, Microstructure and strength of nickel subjected to large plastic deformation at very high strain rate, Mater. Sci. Eng. A, 662(2016), p. 9CrossRefGoogle Scholar
  9. [9]
    A.M. Wusatowska-Sarnek, B. Dubiel, A. Czyrska-Filemonowicz, P.R. Bhowal, N.B. Salah, and J.E. Klemberg-Sapieha, Microstructural characterization of the white etching layer in icnkel-based superalloy, Metall. Mater. Trans. A, 42(2011), p. 3813.CrossRefGoogle Scholar
  10. [10]
    X.C. Liu, H.W. Zhang, and K. Lu, Strain-induced ultrahard and ultrastable nanolaminated structure in nickel, Science, 342(2013), No. 6156, p. 337.CrossRefGoogle Scholar
  11. [11]
    M. Imran, P.T. Mativenga, A. Gholinia, and P.J. Withers, Evaluation of surface integrity in micro drilling process for nickel-based superalloy, Int. J. Adv. Manuf. Technol., 55(2011), No. 5–8, p. 465.CrossRefGoogle Scholar
  12. [12]
    D.A. Huges and N. Hansen, Microstructure and strength of nickel at large strains, Acta Mater., 48(2000), No. 11, p. 2985.CrossRefGoogle Scholar
  13. [13]
    N.R. Tao, X.L. Wu, M.L. Sui, J. Lu, and K. Lu, Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy, J. Mater. Res., 19(2004), p. 1623.CrossRefGoogle Scholar
  14. [14]
    S. Asgari, E. El-danaf, S.R. Kalidindi, and R.D. Doherty, Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins, Metall. Mater. Trans. A, 28(1997), No. 9, p. 1781.CrossRefGoogle Scholar
  15. [15]
    S. M′Guil, W. Wen, S. Ahzi, J.J. Gracio, and R.W. Davies, Analysis of shear deformation by slip and twinning in low and high/medium stacking fault energy fcc metals using the φ-model, Int. J. Plast., 68(2015), p. 132.CrossRefGoogle Scholar
  16. [16]
    N.R. Tao and K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Mater., 60(2009), No. 12, p.1039.Google Scholar
  17. [17]
    Y.X. Chen, Y.Q. Yang, Z.Q. Feng, B. Huang, X. Luo, and G.M. Zhao, Grain refinement and texture evolution during high precision machining of a Ni-based superalloy, Philos. Mag., 97(2017), No. 1, p.28.Google Scholar
  18. [18]
    D. Gao, Z.P. Hao, R.D. Han, Y.L. Chang, and J.N. Muguthu, Study of cutting deformation in machining nickel-based alloy Inconel 718, Int. J. Mach. Tools Manuf., 51(2011), No. 6, p. 520.CrossRefGoogle Scholar
  19. [19]
    B. Mather and S. F. Etris, American Society for Testing and Materials (ASTM). Springer, US, 1981, p. 8.Google Scholar
  20. [20]
    M.F. Ashby, The deformation of plastically non-homogeneous materials, Philos. Mag., 21(1969), No. 170, p. 399.CrossRefGoogle Scholar
  21. [21]
    M. Kumar, A.J. Schwartz, and W.E. King, Microstructural evolution during grain boundary engineering of low to medium stacking fault energy fcc materials, Acta Mater., 50(2002), No. 10, p. 2599.CrossRefGoogle Scholar
  22. [22]
    I.J. Beyerlein and L.S. Tóth, Texture evolution in equal-channel angular extrusion, Prog. Mater. Sci., 54(2009), No. 4, p. 427.CrossRefGoogle Scholar
  23. [23]
    S. Swaminathan, M.R. Shankar, S. Lee, J. Hwang, A.H. King, R.F. Kezar, B.C. Rao, T.L. Brown, S. Chandrasekar, W. Dale Compton, and K.P. Trumble, Large strain deformation and ultra-fine grained materials by machining, Mater. Sci. Eng. A, 410–411(2005), p. 358.CrossRefGoogle Scholar
  24. [24]
    S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan, Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy, Mater. Sci. Eng. A, 293(2000), No. 1–2, p. 198.CrossRefGoogle Scholar
  25. [25]
    A.D. Prete, L. Filice, and D. Umbrello, Numerical simulation of machining nickel-based alloys, Procedia CIRP, 8(2013), p. 540.CrossRefGoogle Scholar
  26. [26]
    N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, and K. Lu, An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment, Acta Mater., 50(2002), No. 18, p. 4603.CrossRefGoogle Scholar
  27. [27]
    K. Shizawa, K. Kikuchi, and H.M. Zbib, A strain-gradient thermodynamic theory of plasticity based on dislocation density and incompatibility tensors, Mater. Sci. Eng. A, 309–310(2001), p. 416.CrossRefGoogle Scholar
  28. [28]
    H. Jarmakani, Y.M. Wang, E. Bringa, and M.A. Meyers, Modeling of the slip-twinning transition in nanocrystalline nickel and nickel-tungsten under shock compression, Shock Compression of Condensed Matter, 24–29(2007), p. 239.Google Scholar
  29. [29]
    K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu, Plastic strain-induced grain refinement at the nanometer scale in copper, Acta Mater., 54(2006), No. 19, p. 5281.CrossRefGoogle Scholar
  30. [30]
    F. Jafarian, M.I. Ciaran, D. Umbrello, P.J. Arrazola, L. Filice, and H. Amirabadi, Finite element simulation of machining Inconel 718 alloy including microstructure changes, Int. J. Mech. Sci., 88(2014), p. 110.CrossRefGoogle Scholar
  31. [31]
    D. Samantaray, S. Mandal, M. Jayalakshmi, C.N. Athreya, A.K. Bhaduri, and V.S. Sarma, New insights into the relationship between dynamic softening phenomena and efficiency of hot working domains of a nitrogen enhanced 316L(N) stainless steel, Mater. Sci. Eng. A, 598(2014), p. 368.CrossRefGoogle Scholar
  32. [32]
    Y.T. Zhu, X.L. Wu, X.Z. Liao, J. Narayan, L.J. Kecskés, and S.N. Mathaudhu, Dislocation-twin interactions in nanocrystalline fcc metals, Acta Mater., 59(2011), No. 2, p. 812.CrossRefGoogle Scholar
  33. [33]
    G.D. Hughes, S.D. Smith, C.S. Pande, H.R. Johnson, and R.W. Armstrong, Hall-Petch strengthening for the microhardness of twelve nanometer grain diameter electrodeposited nickel, Scripta Metall., 20(1986), No. 1, p. 93.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShandong UniversityJinanChina
  2. 2.Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of EducationShandong UniversityShandongChina

Personalised recommendations