Aging behavior of a copper-bearing high-strength low-carbon steel

  • Babak Shahriari
  • Reza Vafaei
  • Ehsan Mohammad Sharifi
  • Khosro Farmanesh
Article

Abstract

The effects of aging temperature and time on the hardness and impact toughness of a copper-bearing high-strength low-carbon steel were investigated. The hardness of the aged samples reached maxima after 1 h and 5 h of aging at 500 and 450°C, respectively; this increase in hardness was followed by a decrease in hardness until a temperature of 700°C, at which secondary hardening was observed. The impact toughness of the aged steel was found to be higher for 5 h of aging. Transmission electron microscopy confirmed the presence of carbide and copper precipitates; also, the secondary hardening could be the result of the transformation of austenite (formed in the aging treatment) to martensite. Differential scanning calorimetry of the steel was performed to better understand the precipitation behavior. The results revealed that the precipitation of the steel exhibited two significant stages of copper precipitate nucleation and coarsening of the precipitates, with corresponding activation energies of 49 and 238 kJ·mol−1, respectively.

Keywords

aging treatment BA-160 steel differential scanning calorimetry precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Saha, J. Jung, and G.B. Olson, Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II, J. Comput. Aided Mater. Des., 14(2007), No. 2, p. 201.CrossRefGoogle Scholar
  2. [2]
    Y. Nie, C.J. Shang, X. Song, Y. You, C. Li, and X.L. He, Properties and homogeneity of 550-MPa grade TMCP steel for ship hull, Int. J. Miner. Metall. Mater., 17(2010), No. 2, p. 179.CrossRefGoogle Scholar
  3. [3]
    A.N. Chiaramonti, J.W. Sowards, D.K. Schreiber, and J.R. Fekete, Understanding the high-temperature mechanical properties of A710 (HSLA-80) steel with use of complementary atom probe tomography and electron microscopy, Microsc. Microanal., 20(2014), Suppl. 3, p. 954.CrossRefGoogle Scholar
  4. [4]
    G.H. Majzoobi, A.H. Mahmoudi, and S. Moradi, Ductile to brittle failure transition of HSLA-100 steel at high strain rates and subzero temperatures, Eng. Fract. Mech., 158(2016), p. 179.CrossRefGoogle Scholar
  5. [5]
    M.D. Mulholland and D.N. Seidman, Nanoscale co-precipitation and mechanical properties of a high-strength low-carbon steel, Acta Mater., 59(2011), No. 5, p. 1881.CrossRefGoogle Scholar
  6. [6]
    F. Khodabakhshi and M. Kazeminezhad, Differential scanning calorimetry study of constrained groove pressed low carbon steel: recovery, recrystallisation and ferrite to austenite phase transformation, Mater. Sci. Technol., 30(2014), No. 7, p. 765.CrossRefGoogle Scholar
  7. [7]
    Z.B. Han, J.H. Liu, Y. He, K.W. Li, Y.L. Ji, and J. Liu, Determination of the liquidus and solidus temperatures of Fe-CrAl stainless steel, Int. J. Miner. Metall. Mater., 22(2015), No. 11, p. 1141.CrossRefGoogle Scholar
  8. [8]
    E. Wielgosz and T. Kargul, Differential scanning calorimetry study of peritectic steel grades, J. Therm. Anal. Calorim., 119(2015), No. 3, p. 1547.CrossRefGoogle Scholar
  9. [9]
    L. Ren, L. Nan, and K. Yang, Study of copper precipitation behavior in a Cu-bearing austenitic antibacterial stainless steel, Mater. Des., 32(2011), No. 4, p. 2374.CrossRefGoogle Scholar
  10. [10]
    N. Maruyama, M. Sugiyama, T. Hara, and H. Tamehiro, Precipitation and phase transformation of copper particles in low alloy ferritic and martensitic steels, Mater. Trans., JIM, 40(1999), No. 4, p. 268.Google Scholar
  11. [11]
    R.L. Blaine and H.E. Kissinger, Homer kissinger and the kissinger equation, Thermochim. Acta, 540(2012), p. 1.CrossRefGoogle Scholar
  12. [12]
    M.J. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta, 404(2003), No. 1-2, p. 163.CrossRefGoogle Scholar
  13. [13]
    R. Monzen, M. Iguchi, and M.L. Jenkins, Structural changes of 9R copper precipitates in an aged Fe-Cu alloy, Philos. Mag. Lett., 80(2000), No. 3, p. 137.CrossRefGoogle Scholar
  14. [14]
    R. Monzen, M.L. Jenkins, and A.P. Sutton, The bcc-to-9R martensitic transformation of Cu precipitates and the relaxation process of elastic strains in an Fe-Cu alloy, Philos. Mag. A, 80(2000), No. 3, p. 711.CrossRefGoogle Scholar
  15. [15]
    T.H. Lee, Y.O. Kim, and S.J. Kim, Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel, Philos. Mag., 87(2007), No. 2, p. 209.CrossRefGoogle Scholar
  16. [16]
    G. Han, Z.J. Xie, Z.Y. Li, B. Lei, C.J. Shang, and R.D.K. Misra, Evolution of crystal structure of Cu precipitates in a low carbon steel, Mater. Des., 135(2017), p. 92.CrossRefGoogle Scholar
  17. [17]
    H.R. Habibi, Atomic structure of the Cu precipitates in two stages hardening in maraging steel, Mater. Lett., 59(2005), No. 14-15, p. 1824.CrossRefGoogle Scholar
  18. [18]
    J. Wang, H. Zou, C. Li, Y.H. Peng, S.Y. Qiu, and B.L. Shen, The microstructure evolution of type 17-4PH stainless steel during long-term aging at 350°C, Nucl. Eng. Des., 236(2006), No. 24, p. 2531.CrossRefGoogle Scholar
  19. [19]
    S.W. Thompson, Microstructural characterization of an as-quenched HSLA-100 plate steel via transmission electron microscopy, Mater. Charact., 77(2013), p. 89.CrossRefGoogle Scholar
  20. [20]
    T.J. Headley and J.A. Brooks, A new Bcc-Fcc orientation relationship observed between ferrite and austenite in solidification structures of steels, Metall. Mater. Trans. A, 33(2002), No. 1, p. 5.CrossRefGoogle Scholar
  21. [21]
    A. Saha and G.B. Olson, Computer-aided design of transformation toughened blast resistant naval hull steels: Part I, J. Comput. Aided Mater. Des., 14(2007), No. 2, p. 177.CrossRefGoogle Scholar
  22. [22]
    S.S.G. Banadkouki, D. Yu, and D.P. Dunne, Age hardening in a Cu-bearing high strength low alloy steel, ISIJ Int., 36(1996), No. 1, p. 61.CrossRefGoogle Scholar
  23. [23]
    B. Hwang, C.G. Lee, and T.H. Lee, Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. A, 41(2009), No. 1, p. 85.CrossRefGoogle Scholar
  24. [24]
    M. Mujahid, A.K. Lis, C.I. Garcia, and A.J. DeArdo, HSLA-100 steels: Influence of aging heat treatment on microstructure and properties, J. Mater. Eng. Perform., 7(1998), No. 2, p. 247.CrossRefGoogle Scholar
  25. [25]
    S. Panwar, D.B. Goel, O.P. Pandey, and K.S. Prasad, Aging of a copper bearing HSLA-100 steel, Bull. Mater. Sci., 26(2003), No. 4, p. 441.CrossRefGoogle Scholar
  26. [26]
    A.N. Bhagat, S.K. Pabi, S. Ranganathan, and O.N. Mohanty, Aging behaviour in copper bearing high strength low alloy steels, ISIJ Int., 44(2004), No. 1, p. 115.Google Scholar
  27. [27]
    R. Hamano, The effect of the precipitation of coherent and incoherent precipitates on the ductility and toughness of high-strength steel, Metall. Trans. A, 24(1993), No. 1, p. 127.CrossRefGoogle Scholar
  28. [28]
    L. Skoufari-Themistou, D.N. Crowther, and B. Mintz, Strength and impact behaviour of age hardenable copper containing steels, Mater. Sci. Technol., 15(1999), No. 9, p. 1069.CrossRefGoogle Scholar
  29. [29]
    NAVSEA Thechnical Publication, Base Materials for Critical Applications: Requirements for Low Aalloy Steel Plate, Forgings, Castings, Shapes, Bars, and Heads of HY-80/100/130 and HSLA-80/100, T9074-BD-GIB-010/0300 (REV. 2), 2012.Google Scholar
  30. [30]
    W.S. Li, H.Y. Gao, Z.Y. Li, H. Nakashima, S. Hata, and W.H. Tian, Effect of lower bainite/martensite/retained austenite triplex microstructure on the mechanical properties of a low-carbon steel with quenching and partitioning process, Int. J. Miner. Metall. Mater., 23(2016), No. 3, p. 303.CrossRefGoogle Scholar
  31. [31]
    D. Isheim, R.P. Kolli, M.E. Fine, and D.N. Seidman, An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels, Scripta Mater., 55(2006), No. 1, p. 35.CrossRefGoogle Scholar
  32. [32]
    P.K. Ray, R.I. Ganguly, and A.K. Panda, Optimization of mechanical properties of an HSLA-100 steel through control of heat treatment variables, Mater. Sci. Eng. A, 346(2003), No.1-2, p. 122.CrossRefGoogle Scholar
  33. [33]
    J.W. Bai, P.P. Liu, Y.M. Zhu, X.M. Li, C.Y. Chi, H.Y. Yu, X.S. Xie, and Q. Zhan, Coherent precipitation of copper in Super304H austenite steel, Mater. Sci. Eng. A, 584(2013), p. 57.CrossRefGoogle Scholar

Copyright information

© University of Science and Technology Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Babak Shahriari
    • 1
  • Reza Vafaei
    • 1
  • Ehsan Mohammad Sharifi
    • 1
  • Khosro Farmanesh
    • 1
  1. 1.Department of Materials EngineeringMalek Ashtar University of TechnologyShahin Shahr, IsfahanIran

Personalised recommendations