Advertisement

Updates on Targeted Therapy for Triple-Negative Breast Cancer (TNBC)

  • Zorawar S. Noor
  • Aashini Master
Clinical Trials (PF Peddi, Section Editor)
  • 32 Downloads
Part of the following topical collections:
  1. Topical Collection on Clinical Trials

Abstract

Purpose of Review

We will provide a brief update of the most recent advances in targeted therapies for triple-negative breast cancer (TNBC) to help guide the practicing oncologist faced with the dilemma of how to treat this complex disease.

Recent Findings

The current standard of care remains chemotherapy, with recent data supporting the use of platinum agents and poly(ADP-ribose) polymerases (PARP) inhibitors. Immune checkpoint inhibitor trials have also shown efficacy.

Summary

TNBCs are grouped together, yet there is an extraordinary amount of diversity amongst these cancers, which have distinct molecular subtypes that predict response to therapy. The use of platinum agents and PARP inhibitors is now well supported. Novel agents including checkpoint inhibitors and antibody-drug conjugates hold promising avenues for the future.

Keywords

Triple-negative breast cancer TNBC Immune checkpoint inhibition Targeted therapy PARP inhibitors Antibody-drug conjugate 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. 1.
    Morris GJ, Naidu S, Topham AK, Guiles F, Xu Y, McCue P, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and End Results database. Cancer. 2007;110(4):876–84.  https://doi.org/10.1002/cncr.22836.CrossRefPubMedGoogle Scholar
  2. 2.
    Haffty BG, Yang Q, Reiss M, Kearney T, Higgins SA, Weidhaas J, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24(36):5652–7.  https://doi.org/10.1200/jco.2006.06.5664.CrossRefGoogle Scholar
  3. 3.
    Pareja F, Geyer FC, Marchio C, Burke KA, Weigelt B, Reis-Filho JS. Triple-negative breast cancer: the importance of molecular and histologic subtyping, and recognition of low-grade variants. NPJ Breast Cancer. 2016;2:16036.  https://doi.org/10.1038/npjbcancer.2016.36.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L. Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 2016;13(11):674–90.  https://doi.org/10.1038/nrclinonc.2016.66.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.  https://doi.org/10.1038/35021093.CrossRefPubMedGoogle Scholar
  6. 6.
    Foulkes WD, Smith IE, Reis-Filho JS. Triple-negative breast cancer. N Engl J Med. 2010;363(20):1938–48.  https://doi.org/10.1056/NEJMra1001389.CrossRefPubMedGoogle Scholar
  7. 7.
    •• Lehmann BD, Jovanovic B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PloS one. 2016;11(6):e0157368.  https://doi.org/10.1371/journal.pone.0157368. A refined molecular subtyping of TNBCs, which provides an important classification system and shows that particular subtypes respond differently to neoadjuvant chemothearpy. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486(7403):346–52.  https://doi.org/10.1038/nature10983.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 2015;21(7):1688–98.  https://doi.org/10.1158/1078-0432.Ccr-14-0432.CrossRefPubMedGoogle Scholar
  10. 10.
    Weigelt B, Mackay A, A’Hern R, Natrajan R, Tan DS, Dowsett M, et al. Breast cancer molecular profiling with single sample predictors: a retrospective analysis. Lancet Oncol. 2010;11(4):339–49.  https://doi.org/10.1016/s1470-2045(10)70008-5.CrossRefPubMedGoogle Scholar
  11. 11.
    Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(8):1275–81.  https://doi.org/10.1200/jco.2007.14.4147.CrossRefGoogle Scholar
  12. 12.
    Cortazar P, Zhang L, Untch M, Mehta K, Costantino JP, Wolmark N, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet (London, England). 2014;384(9938):164–72.  https://doi.org/10.1016/s0140-6736(13)62422-8.CrossRefGoogle Scholar
  13. 13.
    von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.  https://doi.org/10.1016/s1470-2045(14)70160-3.CrossRefGoogle Scholar
  14. 14.
    Masuda H, Baggerly KA, Wang Y, Zhang Y, Gonzalez-Angulo AM, Meric-Bernstam F, et al. Differential response to neoadjuvant chemotherapy among 7 triple-negative breast cancer molecular subtypes. Clin Cancer Res. 2013;19(19):5533–40.  https://doi.org/10.1158/1078-0432.Ccr-13-0799.CrossRefPubMedGoogle Scholar
  15. 15.
    Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9.  https://doi.org/10.1038/nrc1457.CrossRefPubMedGoogle Scholar
  16. 16.
    Turner NC, Tutt AN. Platinum chemotherapy for BRCA1-related breast cancer: do we need more evidence? Breast Cancer Res. 2012;14(6):115.  https://doi.org/10.1186/bcr3332.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Byrski T, Dent R, Blecharz P, Foszczynska-Kloda M, Gronwald J, Huzarski T, et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res. 2012;14(4):R110.  https://doi.org/10.1186/bcr3231.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sikov WM, Berry DA, Perou CM, Singh B, Cirrincione CT, Tolaney SM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol Off J Am Soc Clin Oncol. 2015;33(1):13–21.  https://doi.org/10.1200/jco.2014.57.0572.CrossRefGoogle Scholar
  19. 19.
    Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant cisplatin in triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(7):1145–53.  https://doi.org/10.1200/jco.2009.22.4725.CrossRefGoogle Scholar
  20. 20.
    Jovanovic B, Mayer IA, Mayer EL, Abramson VG, Bardia A, Sanders ME, et al. A randomized phase II neoadjuvant study of cisplatin, paclitaxel with or without everolimus in patients with stage II/III triple-negative breast cancer (TNBC): responses and long-term outcome correlated with increased frequency of DNA damage response gene mutations, TNBC subtype, AR status, and Ki67. Clin Cancer Res. 2017;23(15):4035–45.  https://doi.org/10.1158/1078-0432.ccr-16-3055.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carey L. Old drugs, new tricks for triple-negative breast cancer. Lancet Oncol. 2015;16(4):357–9.  https://doi.org/10.1016/s1470-2045(15)70108-7.CrossRefPubMedGoogle Scholar
  22. 22.
    • Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33.  https://doi.org/10.1056/NEJMoa1706450. A randomized phase 3 trial of the PARP inhibitor olaparib in patients with germline BRCA mutations demonstrated significant PFS compared to standard therapy. CrossRefPubMedGoogle Scholar
  23. 23.
    •• Loibl S, O’Shaughnessy J, Untch M, Sikov WM, Rugo HS, MD MK, et al. Addition of the PARP inhibitor veliparib plus carboplatin or carboplatin alone to standard neoadjuvant chemotherapy in triple-negative breast cancer (BrighTNess): a randomised, phase 3 trial. Lancet Oncol.  https://doi.org/10.1016/S1470-2045(18)30111-6. The only global double-blind placebo-controlled phase 3 randomized trial to assess neoadjuvant therapy for TNBCs. Importantly, given the similar mechanistic effects of PARP inhbition and platinum-based therapy, it addresses the question of whether there is added benefit of the PARP inhibitor veliparib to platinum-based therapy. CrossRefGoogle Scholar
  24. 24.
    Turner NC, Telli ML, Rugo HS, Mailliez A, Ettl J, Grischke E-M, et al. Final results of a phase 2 study of talazoparib (TALA) following platinum or multiple cytotoxic regimens in advanced breast cancer patients (pts) with germline BRCA1/2 mutations (ABRAZO). J Clin Oncol. 2017;35(15_suppl):1007.  https://doi.org/10.1200/JCO.2017.35.15_suppl.1007.CrossRefGoogle Scholar
  25. 25.
    O’Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2014;32(34):3840–7.  https://doi.org/10.1200/JCO.2014.55.2984.CrossRefPubMedGoogle Scholar
  26. 26.
    Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol. 2014;25(8):1544–50.  https://doi.org/10.1093/annonc/mdu112.CrossRefPubMedGoogle Scholar
  27. 27.
    Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50.  https://doi.org/10.1016/S1470-2045(17)30904-X.CrossRefPubMedGoogle Scholar
  28. 28.
    Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–70.  https://doi.org/10.1158/2326-6066.Cir-13-0127.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Adams S, Schmid P, Rugo HS, Winer EP, Loirat D, Awada A, et al. Phase 2 study of pembrolizumab (pembro) monotherapy for previously treated metastatic triple-negative breast cancer (mTNBC): KEYNOTE-086 cohort A. J Clin Oncol. 2017;35(15_suppl):1008.  https://doi.org/10.1200/JCO.2017.35.15_suppl.1008.CrossRefGoogle Scholar
  30. 30.
    Adams S, Loi S, Toppmeyer D, Cescon DW, Laurentiis MD, Nanda R, et al. Phase 2 study of pembrolizumab as first-line therapy for PD-L1–positive metastatic triple-negative breast cancer (mTNBC): preliminary data from KEYNOTE-086 cohort B. J Clin Oncol. 2017;35(15_suppl):1088.  https://doi.org/10.1200/JCO.2017.35.15_suppl.1088.CrossRefGoogle Scholar
  31. 31.
    Schmid P, Cruz C, Braiteh FS, Eder JP, Tolaney S, Kuter I, et al. Abstract 2986: atezolizumab in metastatic TNBC (mTNBC): long-term clinical outcomes and biomarker analyses. Cancer Res. 2017;77(13 Supplement):2986.  https://doi.org/10.1158/1538-7445.Am2017-2986.CrossRefGoogle Scholar
  32. 32.
    Dirix LY, Takacs I, Jerusalem G, Nikolinakos P, Arkenau HT, Forero-Torres A, et al. Avelumab, an anti-PD-L1 antibody, in patients with locally advanced or metastatic breast cancer: a phase 1b JAVELIN Solid Tumor study. Breast Cancer Res Treat. 2018;167(3):671–86.  https://doi.org/10.1007/s10549-017-4537-5.CrossRefPubMedGoogle Scholar
  33. 33.
    • Kwa MJ, Adams S. Checkpoint inhibitors in triple-negative breast cancer (TNBC): where to go from here. Cancer. 2018.  https://doi.org/10.1002/cncr.31272. A good review on immune checkpoint inhibitors for TNBC including ongoing trials. CrossRefGoogle Scholar
  34. 34.
    Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J Med. 2018;378:2078–92.  https://doi.org/10.1056/NEJMoa1801005.CrossRefPubMedGoogle Scholar
  35. 35.
    Adams S, Diamond JR, Hamilton EP, Pohlmann PR, Tolaney SM, Molinero L, et al. Phase Ib trial of atezolizumab in combination with nab-paclitaxel in patients with metastatic triple-negative breast cancer (mTNBC). J Clin Oncol. 2016;34(15_suppl):1009.  https://doi.org/10.1200/JCO.2016.34.15_suppl.1009.CrossRefGoogle Scholar
  36. 36.
    Tolaney S, Kalinsky K, Kaklamani V, Savulsky C, Olivo M, Aktan G, et al. Abstract PD6-13: phase 1b/2 study to evaluate eribulin mesylate in combination with pembrolizumab in patients with metastatic triple-negative breast cancer. Cancer Res. 2018;78(4 Supplement):PD6–13-PD6.  https://doi.org/10.1158/1538-7445.Sabcs17-pd6-13.CrossRefGoogle Scholar
  37. 37.
    Nanda R, Liu MC, Yau C, Asare S, Hylton N, LVt V, et al. Pembrolizumab plus standard neoadjuvant therapy for high-risk breast cancer (BC): results from I-SPY 2. J Clin Oncol. 2017;35(15_suppl):506.  https://doi.org/10.1200/JCO.2017.35.15_suppl.506.CrossRefGoogle Scholar
  38. 38.
    Schmid P, Park YH, Muñoz-Couselo E, Kim S-B, Sohn J, Im S-A, et al. Pembrolizumab (pembro) + chemotherapy (chemo) as neoadjuvant treatment for triple negative breast cancer (TNBC): preliminary results from KEYNOTE-173. J Clin Oncol. 2017;35(15_suppl):556.  https://doi.org/10.1200/JCO.2017.35.15_suppl.556.CrossRefGoogle Scholar
  39. 39.
    Rida P, Ogden A, Ellis IO, Varga Z, Wolff AC, Traina TA, et al. First international TNBC conference meeting report. Breast Cancer Res Treat. 2018;169:407–12.  https://doi.org/10.1007/s10549-018-4692-3.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin M, Chan A, Dirix L, O’Shaughnessy J, Hegg R, Manikhas A, et al. A randomized adaptive phase II/III study of buparlisib, a pan-class I PI3K inhibitor, combined with paclitaxel for the treatment of HER2- advanced breast cancer (BELLE-4). Ann Oncol. 2017;28(2):313–20.  https://doi.org/10.1093/annonc/mdw562.CrossRefPubMedGoogle Scholar
  41. 41.
    Kim SB, Dent R, Im SA, Espie M, Blau S, Tan AR, et al. Ipatasertib plus paclitaxel versus placebo plus paclitaxel as first-line therapy for metastatic triple-negative breast cancer (LOTUS): a multicentre, randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Oncol. 2017;18(10):1360–72.  https://doi.org/10.1016/s1470-2045(17)30450-3.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig. 2011;121(7):2750–67.  https://doi.org/10.1172/jci45014.CrossRefPubMedGoogle Scholar
  43. 43.
    Traina TA, Miller K, Yardley DA, Eakle J, Schwartzberg LS, O’Shaughnessy J, et al. Enzalutamide for the treatment of androgen receptor-expressing triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2018;36:884–90.  https://doi.org/10.1200/jco.2016.71.3495.CrossRefGoogle Scholar
  44. 44.
    Asghar US, Barr AR, Cutts R, Beaney M, Babina I, Sampath D, et al. Single-cell dynamics determines response to CDK4/6 inhibition in triple-negative breast cancer. Clin Cancer Res. 2017;23(18):5561–72.  https://doi.org/10.1158/1078-0432.Ccr-17-0369.CrossRefPubMedGoogle Scholar
  45. 45.
    Bardia A, Mayer IA, Diamond JR, Moroose RL, Isakoff SJ, Starodub AN, et al. Efficacy and safety of anti-trop-2 antibody drug conjugate sacituzumab govitecan (IMMU-132) in heavily pretreated patients with metastatic triple-negative breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2017;35(19):2141–8.  https://doi.org/10.1200/jco.2016.70.8297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations