Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sarcopenia, Obesity and Sarcopenia Obesity in Comparison: Prevalence, Metabolic Profile, and Key Differences: Results from WCHAT Study

Abstract

Objective

To identify the prevalence, lifestyle factors, chronic disease status, and assessing the metabolic profile, comparing key differences in a cohort of subjects with non-sarcopenia/non-obesity (H), sarcopenia/non-obesity (S), non-sarcopenia/obesity (O) and sarcopenia obesity (SO) in a multi-ethnic population in west China.

Design

A cross-sectional study.

Setting

The communities in Yunnan, Guizhou, Sichuan, and Xinjiang provinces.

Participants

We included 4,500 participants aged 50 years or older who did bioelectrical impedance in our analysis from West China Health and Aging Trend (WCHAT) study.

Measurements

We measured gait speed, handgrip strength and muscle mass by using bioelectrical impedance analysis (BIA) for all participants. We defined sarcopenia using the diagnostic algorithm recommended by the Asian Working Group for Sarcopenia (AWGS). Obesity was defined as the highest sex-specific quintile of the percentage body fat. Different variables like anthropometry measures, life styles, chronic disease and blood test were collected. Analysis of variance and a multinomial logistic regression analysis adjusting for covariates were used to assess the differences of metabolic profiles among different groups.

Results

Of 4500 participants aged 50 years old or older, the proportions of H, O, S, SO were 63.0%, 17.7%, 16.7% and 2.6%, respectively. And the prevalence of S subjects in men was 18.3% and 15.7% in women, while the prevalence of SO was 3.7% in men and 2.0% in women. Data showed that the prevalence of S and SO has an aging increase pattern which was opposite with O. Both S and SO tends to be older, lower educational level, without spouse, smoking, comorbidity of chronic disease, poor nutrition status, depression and cognitive decline compared to H and S seems to be worse than SO. Compared to H, S cohort showed a decrease in Vitamin D, triglyceride, albumin, fasting glucose, insulin, creatinine, ALT, nutrition scores and increase in HDL. SO cohort were observed for an increase in cholesterol, LDL, total protein and decrease in vitamin D. While O cohort showed an increase in triglyceride, cholesterol, LDL, total protein, glucose, insulin, WBC, uric acid, ALT and nutrition scores, but a decrease in HDL and vitamin D level.

Conclusions

Among individuals aged 50 years old or older in West China. S, O and SO participants demonstrate distinct differences in the life-styles, chronic disease profile, and metabolic profiles. The prevalence of S and SO has an aging increase pattern contrary to O. Both S and SO tend to be older, lower educational level, without spouse, smoking, comorbidity of chronic disease, poor nutrition status, depression and cognitive decline compared to H and S looks like to be worse than SO. Besides, the S subjects seem to have more metabolic index changes than SO compared to H. While O subjects have some contrary metabolic index to S subjects.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Rosenberg IH. Sarcopenia: origins and clinical relevance. The Journal of nutrition 1997;127 (5 Suppl):990s–991s. doi:https://doi.org/10.1093/jn/127.5.990S

  2. 2.

    Morley JE, Abbatecola AM, Argiles JM, Baracos V, Bauer J, Bhasin S, Cederholm T, Coats AJS, Cummings SR, Evans WJ. Sarcopenia with limited mobility: an international consensus. Journal of the American Medical Directors Association 2011;12 (6):403–409

  3. 3.

    Marzetti E, Calvani R, Tosato M, Cesari M, Di Bari M, Cherubini A, Collamati A, D’Angelo E, Pahor M, Bernabei R, Landi F. Sarcopenia: an overview. Aging clinical and experimental research 2017;29 (1):11–17. doi:https://doi.org/10.1007/s40520-016-0704-5

  4. 4.

    Padwal R, Leslie WD, Lix LM, Majumdar SR. Relationship Among Body Fat Percentage, Body Mass Index, and All-Cause Mortality: A Cohort Study. Annals of internal medicine 2016;164 (8):532–541. doi:https://doi.org/10.7326/m15-1181

  5. 5.

    Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB. How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? American journal of epidemiology 1996;143 (3):228–239. doi:https://doi.org/10.1093/oxfordjournals.aje.a008733

  6. 6.

    Prado CM, Wells JC, Smith SR, Stephan BC, Siervo M. Sarcopenic obesity: A Critical appraisal of the current evidence. Clinical nutrition (Edinburgh, Scotland) 2012;31 (5):583–601. doi:https://doi.org/10.1016/j.clnu.2012.06.010

  7. 7.

    Johnson Stoklossa CA, Sharma AM, Forhan M, Siervo M, Padwal RS. Prevalence of Sarcopenic Obesity in Adults with Class II/III Obesity Using Different Diagnostic Criteria. 2017:7307618. doi:https://doi.org/10.1155/2017/7307618

  8. 8.

    Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing research reviews 2017;35:200–221. doi:https://doi.org/10.1016/j.arr.2016.09.008

  9. 9.

    Barbat-Artigas S, Pion CH, Leduc-Gaudet JP, Rolland Y, Aubertin-Leheudre M. Exploring the role of muscle mass, obesity, and age in the relationship between muscle quality and physical function. J Am Med Dir Assoc 2014;15 (4):303.e313–320. doi:https://doi.org/10.1016/j.jamda.2013.12.008

  10. 10.

    Tian S, Xu Y. Association of sarcopenic obesity with the risk of all-cause mortality: A meta-analysis of prospective cohort studies. Geriatrics & gerontology international 2016;16 (2):155–166. doi:https://doi.org/10.1111/ggi.12579

  11. 11.

    Cruz-Jentoft AJ, Francesco L, Schneider SM, Clemente ZI, Hidenori A, Yves B, Liang-Kung C, Fielding RA, Martin FC, Jean-Pierre M. Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the International Sarcopenia Initiative (EWGSOP and IWGS). Age & Ageing 2014;43 (6):748–759

  12. 12.

    Tosato M, Marzetti E, Cesari M, Savera G, Miller RR, Bernabei R, Landi F, Calvani R. Measurement of muscle mass in sarcopenia: from imaging to biochemical markers. Aging clinical and experimental research 2017;29 (1):19–27. doi:https://doi.org/10.1007/s40520-016-0717-0

  13. 13.

    Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 2019;48 (4):601. doi:https://doi.org/10.1093/ageing/afz046

  14. 14.

    Wang H, Hai S, Cao L, Zhou J, Liu P, Dong BR. Estimation of prevalence of sarcopenia by using a new bioelectrical impedance analysis in Chinese community-dwelling elderly people. BMC geriatrics 2016;16 (1):216. doi:https://doi.org/10.1186/s12877-016-0386-z

  15. 15.

    Landi F, Calvani R, Tosato M, Martone AM, Fusco D, Sisto A, Ortolani E, Savera G, Salini S, Marzetti E. Age-Related Variations of Muscle Mass, Strength, and Physical Performance in Community-Dwellers: Results From the Milan EXPO Survey. J Am Med Dir Assoc 2017;18 (1):88.e17–88.e24. doi:https://doi.org/10.1016/j.jamda.2016.10.007

  16. 16.

    Pfeiffer E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. Journal of the American Geriatrics Society 1975; 23 (10):433–441

  17. 17.

    Tsai PS, Wang SY, Wang MY, Su CT, Yang TT, Huang CJ, Fang SC. Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects. Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation 2005;14 (8):1943–1952. doi:https://doi.org/10.1007/s11136-005-4346-x

  18. 18.

    Zhang L, Wang C, Sha SY, Kwauk S, Miller AR, Xie MS, Dong YQ, Kong QQ, Wu LJ, Zhang FZ, Liu J, Wang GS, Jing Y, Wang LC. Mini-nutrition assessment, malnutrition, and postoperative complications in elderly Chinese patients with lung cancer. Journal of BUON: official journal of the Balkan Union of Oncology 2012;17 (2):323–326

  19. 19.

    Choi KM. Sarcopenia and sarcopenic obesity. The Korean journal of internal medicine 2016;31 (6):1054–1060. doi:https://doi.org/10.3904/kjim.2016.193

  20. 20.

    Beyer I, Mets T, Bautmans I. Chronic low-grade inflammation and age-related sarcopenia. Current opinion in clinical nutrition and metabolic care 2012;15 (1):12–22. doi:https://doi.org/10.1097/MCO.0b013e32834dd297

  21. 21.

    Damiano S, Muscariello E, La Rosa G, Di Maro M, Mondola P, Santillo M. Dual Role of Reactive Oxygen Species in Muscle Function: Can Antioxidant Dietary Supplements Counteract Age-Related Sarcopenia? International journal of molecular sciences 2019;20 (15). doi:https://doi.org/10.3390/ijms20153815

  22. 22.

    Chen LK, Lee WJ, Peng LN, Liu LK, Arai H, Akishita M. Recent Advances in Sarcopenia Research in Asia: 2016 Update From the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 2016;17 (8):767.e761–767. doi:https://doi.org/10.1016/j.jamda.2016.05.016

  23. 23.

    Savastano S, Barrea L, Savanelli MC, Nappi F, Di Somma C, Orio F, Colao A. Low vitamin D status and obesity: Role of nutritionist. Reviews in endocrine & metabolic disorders 2017;18 (2):215–225. doi:https://doi.org/10.1007/s11154-017-9410-7

  24. 24.

    Bosdou JK, Konstantinidou E, Anagnostis P, Kolibianakis EM, Goulis DG. Vitamin D and Obesity: Two Interacting Players in the Field of Infertility. Nutrients 2019;11 (7). doi:https://doi.org/10.3390/nu11071455

  25. 25.

    Abbas MA. Physiological functions of Vitamin D in adipose tissue. The Journal of steroid biochemistry and molecular biology 2017;165 (Pt B):369–381. doi:https://doi.org/10.1016/j.jsbmb.2016.08.004

  26. 26.

    Vimaleswaran KS, Berry DJ, Lu C, Tikkanen E, Pilz S, Hiraki LT, Cooper JD, Dastani Z, Li R, Houston DK, Wood AR, Michaelsson K, Vandenput L, Zgaga L, Yerges-Armstrong LM, McCarthy MI, Dupuis J, Kaakinen M, Kleber ME, Jameson K, Arden N, Raitakari O, Viikari J, Lohman KK, Ferrucci L, Melhus H, Ingelsson E, Byberg L, Lind L, Lorentzon M, Salomaa V, Campbell H, Dunlop M, Mitchell BD, Herzig KH, Pouta A, Hartikainen AL, Streeten EA, Theodoratou E, Jula A, Wareham NJ, Ohlsson C, Frayling TM, Kritchevsky SB, Spector TD, Richards JB, Lehtimaki T, Ouwehand WH, Kraft P, Cooper C, Marz W, Power C, Loos RJ, Wang TJ, Jarvelin MR, Whittaker JC, Hingorani AD, Hypponen E. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS medicine 2013;10 (2):e1001383. doi:https://doi.org/10.1371/journal.pmed.1001383

  27. 27.

    Deluca HF. History of the discovery of vitamin D and its active metabolites. BoneKEy reports 2014;3:479. doi:https://doi.org/10.1038/bonekey.2013.213

  28. 28.

    Agergaard J, Trostrup J, Uth J, Iversen JV, Boesen A, Andersen JL, Schjerling P, Langberg H. Does vitamin-D intake during resistance training improve the skeletal muscle hypertrophic and strength response in young and elderly men? - a randomized controlled trial. Nutrition & metabolism 2015;12:32. doi:https://doi.org/10.1186/s12986-015-0029-y

  29. 29.

    Shuler FD, Wingate MK, Moore GH, Giangarra C. Sports health benefits of vitamin d. Sports health 2012;4 (6):496–501. doi:https://doi.org/10.1177/1941738112461621

  30. 30.

    Kim J, Lee Y, Kye S, Chung YS, Lee O. Association of serum vitamin D with osteosarcopenic obesity: Korea National Health and Nutrition Examination Survey 2008–2010. Journal of cachexia, sarcopenia and muscle 2017;8 (2):259–266. doi:https://doi.org/10.1002/jcsm.12154

  31. 31.

    Visser M, Kritchevsky SB, Newman AB, Goodpaster BH, Tylavsky FA, Nevitt MC, Harris TB. Lower serum albumin concentration and change in muscle mass: the Health, Aging and Body Composition Study. The American journal of clinical nutrition 2005;82 (3):531–537. doi:https://doi.org/10.1093/ajcn.82.3.531

  32. 32.

    Uemura K, Doi T, Lee S, Shimada H. Sarcopenia and Low Serum Albumin Level Synergistically Increase the Risk of Incident Disability in Older Adults. J Am Med Dir Assoc 2019;20 (1):90–93. doi:https://doi.org/10.1016/j.jamda.2018.06.011

  33. 33.

    van Atteveld VA, Van Ancum JM, Reijnierse EM, Trappenburg MC, Meskers CGM, Maier AB. Erythrocyte sedimentation rate and albumin as markers of inflammation are associated with measures of sarcopenia: a cross-sectional study. 2019;19 (1):233. doi:10.1186/s12877-019-1253-5

  34. 34.

    Oettl K, Stauber RE. Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. British journal of pharmacology 2007;151 (5):580–590. doi:https://doi.org/10.1038/sj.bjp.0707251

  35. 35.

    Derbre F, Gratas-Delamarche A, Gomez-Cabrera MC, Vina J. Inactivity-induced oxidative stress: a central role in age-related sarcopenia? European journal of sport science 2014;14 Suppl 1:S98–108. doi:https://doi.org/10.1080/17461391.2011.654268

  36. 36.

    Jones DT, Ganeshaguru K, Anderson RJ, Jackson TR, Bruckdorfer KR, Low SY, Palmqvist L, Prentice HG, Hoffbrand AV, Mehta AB, Wickremasinghe RG. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis. Blood 2003;101 (8):3174–3180. doi:https://doi.org/10.1182/blood-2002-07-2143

  37. 37.

    Mosli RH, Mosli HH. Obesity and morbid obesity associated with higher odds of hypoalbuminemia in adults without liver disease or renal failure. Diabetes, metabolic syndrome and obesity: targets and therapy 2017;10:467–472. doi:https://doi.org/10.2147/dmso.s149832

  38. 38.

    Fujita S, Rasmussen BB, Cadenas JG, Drummond MJ, Glynn EL, Sattler FR, Volpi E. Aerobic exercise overcomes the age-related insulin resistance of muscle protein metabolism by improving endothelial function and Akt/mammalian target of rapamycin signaling. Diabetes 2007;56 (6):1615–1622. doi:https://doi.org/10.2337/db06-1566

  39. 39.

    Kim K, Valentine RJ, Shin Y, Gong K. Associations of visceral adiposity and exercise participation with C-reactive protein, insulin resistance, and endothelial dysfunction in Korean healthy adults. Metabolism: clinical and experimental 2008;57 (9):1181–1189. doi:https://doi.org/10.1016/j.metabol.2008.04.009

  40. 40.

    Scott D, Cumming R, Naganathan V, Blyth F, Le Couteur DG, Handelsman DJ, Seibel M, Waite LM, Hirani V. Associations of sarcopenic obesity with the metabolic syndrome and insulin resistance over five years in older men: The Concord Health and Ageing in Men Project. Experimental gerontology 2018;108:99–105. doi:https://doi.org/10.1016/j.exger.2018.04.006

  41. 41.

    Yanagita I, Fujihara Y, Kitajima Y, Tajima M, Honda M, Kawajiri T, Eda T, Yonemura K, Yamaguchi N, Asakawa H, Nei Y, Kayashima Y, Yoshimoto M, Harada M, Araki Y, Yoshimoto S, Aida E, Yanase T, Nawata H, Muta K. A High Serum Cortisol/DHEA-S Ratio Is a Risk Factor for Sarcopenia in Elderly Diabetic Patients. Journal of the Endocrine Society 2019;3 (4):801–813. doi:https://doi.org/10.1210/js.2018-00271

  42. 42.

    Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. The Journal of endocrinology 2008;197 (1):1–10. doi:https://doi.org/10.1677/joe-07-0606

  43. 43.

    Shimizu N, Yoshikawa N, Ito N, Maruyama T, Suzuki Y, Takeda S, Nakae J, Tagata Y, Nishitani S, Takehana K, Sano M, Fukuda K, Suematsu M, Morimoto C, Tanaka H. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell metabolism 2011;13 (2):170–182. doi:https://doi.org/10.1016/j.cmet.2011.01.001

  44. 44.

    Incollingo Rodriguez AC, Epel ES, White ML, Standen EC, Seckl JR, Tomiyama AJ. Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review. Psychoneuroendocrinology 2015;62:301–318. doi:https://doi.org/10.1016/j.psyneuen.2015.08.014

  45. 45.

    Chorr M, Lawson EA, Dichtel LE, Klibanski A, Miller KK. Cortisol Measures Across the Weight Spectrum. The Journal of clinical endocrinology and metabolism 2015;100 (9):3313–3321. doi:https://doi.org/10.1210/jc.2015-2078

  46. 46.

    Vespasiani-Gentilucci U, De Vincentis A, Ferrucci L, Bandinelli S, Antonelli Incalzi R, Picardi A. Low Alanine Aminotransferase Levels in the Elderly Population: Frailty, Disability, Sarcopenia, and Reduced Survival. The journals of gerontology Series A, Biological sciences and medical sciences 2018;73 (7):925–930. doi:https://doi.org/10.1093/gerona/glx126

  47. 47.

    Shibata M, Nakajima K, Higuchi R, Iwane T, Sugiyama M, Nakamura T. High Concentration of Serum Aspartate Aminotransferase in Older Underweight People: Results of the Kanagawa Investigation of the Total Check-Up Data from the National Database-2 (KITCHEN-2). Journal of clinical medicine 2019;8 (9). doi:https://doi.org/10.3390/jcm8091282

  48. 48.

    Fu S, Lin Y, Luo L, Ye P. The relationship of serum alanine aminotransferase normal-range levels to arterial stiffness and metabolic syndrome in non-drinkers and drinkers: a Chinese community-based analysis. BMC gastroenterology 2017;17 (1):49. doi:https://doi.org/10.1186/s12876-017-0607-8

  49. 49.

    Ermin CR, Lee AM, Filipp SL, Gurka MJ, DeBoer MD. Serum Alanine Aminotransferase Trends and Their Relationship with Obesity and Metabolic Syndrome in United States Adolescents, 1999–2014. Metabolic syndrome and related disorders 2017;15 (6):276–282. doi:https://doi.org/10.1089/met.2017.0023

  50. 50.

    Perna S, Peroni G, Faliva MA, Bartolo A, Naso M, Miccono A, Rondanelli M. Sarcopenia and sarcopenic obesity in comparison: prevalence, metabolic profile, and key differences. A cross-sectional study in Italian hospitalized elderly. Aging clinical and experimental research 2017;29 (6):1249–1258. doi:https://doi.org/10.1007/s40520-016-0701-8

Download references

Acknowledgements

We thank all the volunteers for the participation and personnel for their contribution to the WCHAT study.

Author information

Correspondence to Ning Ge or Birong Dong.

Ethics declarations

The current research was approved by the Ethical Review Committee of West China Hospital of Sichuan University with the committee’s reference number 2017(445) and the registration number is ChiCTR 1800018895.

Additional information

Conflicts of Interest

The authors report no conflicts of interest in this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Hao, Q., Yue, J. et al. Sarcopenia, Obesity and Sarcopenia Obesity in Comparison: Prevalence, Metabolic Profile, and Key Differences: Results from WCHAT Study. J Nutr Health Aging (2020). https://doi.org/10.1007/s12603-020-1332-5

Download citation

Key words

  • Sarcopenia
  • obesity
  • sarcopenia obesity
  • prevalence
  • West China
  • metabolic profile