The journal of nutrition, health & aging

, Volume 23, Issue 1, pp 84–88 | Cite as

The Prevalence and Prognosis of Sarcopenic Dysphagia in Patients Who Require Dysphagia Rehabilitation

  • Hidetaka WakabayashiEmail author
  • R. Takahashi
  • T. Murakami



The purpose of this study was to assess the prevalence and prognosis of sarcopenic dysphagia in patients who require dysphagia rehabilitation.


Prospective cohort study.


Tertiary-care acute general hospital.


One hundred and eight patients referred to the Department of Rehabilitation Medicine for dysphagia rehabilitation.


The Food Intake Level Scale (FILS), a 5-step diagnostic algorithm for sarcopenic dysphagia.


The study included 72 males and 36 females (mean age, 76±7 years). Comorbid diseases included brain and nervous system disease (36%), cardiovascular disease (25%), respiratory disease (14%), and cancer (11%). Median energy intake was 1159 kcal (interquartile range: 648, 1502). Median FILS at admission and discharge was 4 (interquartile range: 2, 7) and 8 (interquartile range: 5, 8), respectively. Sarcopenic dysphagia was observed in 35 patients (32%). Sarcopenic dysphagia was associated with lower FILS at referral and discharge, lower calf circumference, lower handgrip strength, lower body mass index, lower serum albumin, and higher C-reactive protein at referral. Tongue pressure, energy intake, and Barthel index did not differ significantly between patients with or without sarcopenic dysphagia. Ordered logistic regression analysis of the FILS at discharge adjusted for presence of sarcopenic dysphagia, age, sex, and the FILS at admission revealed that presence of sarcopenic dysphagia (β=-1.603, 95% confidence intervals= -2.609, -0.597, p=0.002), sex, and the FILS at admission were independently associated with the FILS at discharge.


The prevalence of sarcopenic dysphagia in patients who require dysphagia rehabilitation was quite high. Sarcopenic dysphagia was independently associated with poor swallowing function at discharge.

Key words

Sarcopenia deglutition disorders malnutrition epidemiology 


  1. 1.
    Wakabayashi H. Presbyphagia and Sarcopenic Dysphagia: Association between Aging, Sarcopenia, and Deglutition Disorders. J Frailty Aging. 2014;3:97–103. doi: 10.14283/jfa.2014.8.Google Scholar
  2. 2.
    Wakabayashi H, Sakuma K. Rehabilitation nutrition for sarcopenia with disability: a combination of both rehabilitation and nutrition care management. J Cachexia Sarcopenia Muscle. 2014;5:269–277. doi: 10.1007/s13539–014–0162–x.CrossRefGoogle Scholar
  3. 3.
    Ogawa N, Mori T, Fujishima I, Wakabayashi H, Itoda M, Kunieda K, Shigematsu T, Nishioka S, Tohara H, Yamada M, Ogawa S. Ultrasonography to Measure Swallowing Muscle Mass and Quality in Older Patients With Sarcopenic Dysphagia. J Am Med Dir Assoc. 2018;19:516–522. doi: 10.1016/j.jamda.2017.11.007.CrossRefGoogle Scholar
  4. 4.
    Komatsu R, Okazaki T, Ebihara S, Kobayashi M, Tsukita Y, Nihei M, Sugiura H, Niu K, Ebihara T, Ichinose M. Aspiration pneumonia induces muscle atrophy in the respiratory, skeletal, and swallowing systems. J Cachexia Sarcopenia Muscle. 2018;doi: 10.1002/jcsm.12297.Google Scholar
  5. 5.
    Maeda K, Takaki M, Akagi J. Decreased Skeletal Muscle Mass and Risk Factors of Sarcopenic Dysphagia: A Prospective Observational Cohort Study. J Gerontol A Biol Sci Med Sci. 2017;72:1290–1294. doi: 10.1093/gerona/glw190.Google Scholar
  6. 6.
    Zhao W–T, Yang M, Wu H–M, Yang L, Zhang X–m, Huang Y. Systematic Review and Meta–Analysis of the Association Between Sarcopenia and Dysphagia. J Nutr Health Aging. 2018;doi: 10.1007/s12603–018–1055–z.Google Scholar
  7. 7.
    Mori T, Fujishima I, Wakabayashi H, Oshima F, Itoda M. Development and reliability of a diagnostic algorithm for sarcopenic dysphagia. JCSM Clinical Reports. 2017;2: e00017. doi: 10.17987/jcsm–cr.v2i2.17.Google Scholar
  8. 8.
    Maeda K, Akagi J. Treatment of Sarcopenic Dysphagia with Rehabilitation and Nutritional Support: A Comprehensive Approach. J Acad Nutr Diet. 2016;116(4):573–577. doi: 10.1016/j.jand.2015.09.019.CrossRefGoogle Scholar
  9. 9.
    Wakabayashi H, Uwano R. Rehabilitation Nutrition for Possible Sarcopenic Dysphagia After Lung Cancer Surgery: A Case Report. Am J Phys Med Rehabil. 2016;95(6):e84–89. doi: 10.1097/PHM.0000000000000458.CrossRefGoogle Scholar
  10. 10.
    Hashida N, Shamoto H, Maeda K, Wakabayashi H, Suzuki M, Fujii T. Rehabilitation and nutritional support for sarcopenic dysphagia and tongue atrophy after glossectomy: A case report. Nutrition. 2017;35:128–131. doi: 10.1016/j. nut.2016.11.003.CrossRefGoogle Scholar
  11. 11.
    Uno C, Wakabayashi H, Maeda K, Nishioka S. Rehabilitation nutrition support for a hemodialysis patient with protein–energy wasting and sarcopenic dysphagia: a case report. Renal Replacement Therapy. 2018;4:18. doi: 10.1186/s41100–018–0160–0CrossRefGoogle Scholar
  12. 12.
    Wakabayashi H, Matsushima M, Momosaki R, Yoshida S, Mutai R, Yodoshi T, Murayama S, Hayashi T, Horiguchi R, Ichikawa H. The effects of resistance training of swallowing muscles on dysphagia in older people: a cluster, randomized, controlled trial. Nutrition. 2018;48:111–116. doi: 10.1016/j.nut.2017.11.009.CrossRefGoogle Scholar
  13. 13.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H. Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101. doi: 10.1016/j. jamda.2013.11.025.CrossRefGoogle Scholar
  14. 14.
    Maeda K, Koga T, Nasu T, Takaki M, Akagi J. Predictive Accuracy of Calf Circumference Measurements to Detect Decreased Skeletal Muscle Mass and European Society for Clinical Nutrition and Metabolism–Defined Malnutrition in Hospitalized Older Patients. Ann Nutr Metab. 2017;71:10–15. doi: 10.1159/000478707.CrossRefGoogle Scholar
  15. 15.
    Kunieda K, Ohno T, Fujishima I, Hojo K, Morita T. Reliability and validity of a tool to measure the severity of dysphagia: the Food Intake LEVEL Scale. J Pain Symptom Manage. 2013;46(2):201–206. doi: 10.1016/j.jpainsymman.2012.07.020.CrossRefGoogle Scholar
  16. 16.
    Utanohara Y, Hayashi R, Yoshikawa M, Yoshida M, Tsuga K, Akagawa Y. Standard values of maximum tongue pressure taken using newly developed disposable tongue pressure measurement device. Dysphagia. 2008;23:286–290. doi: 10.1007/s00455–007–9142–z.CrossRefGoogle Scholar
  17. 17.
    Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J. 1965;14:61–65.Google Scholar
  18. 18.
    Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent JP, Nicolis I, Benazeth S, Cynober L, Aussel C. Geriatric Nutritional Risk Index: a new index for evaluating at–risk elderly medical patients. Am J Clin Nutr. 2005;82:777–783.CrossRefGoogle Scholar
  19. 19.
    Bock JM, Varadarajan V, Brawley MC, Blumin JH. Evaluation of the natural history of patients who aspirate. Laryngoscope. 2017;127 Suppl 8:S1–10. doi: 10.1002/ lary.26854.CrossRefGoogle Scholar
  20. 20.
    Bhattacharyya N. The prevalence of dysphagia among adults in the United States. Otolaryngol Head Neck Surg. 2014;151:765–769. doi: 10.1177/0194599814549156.CrossRefGoogle Scholar
  21. 21.
    Iwamoto M, Higashibeppu N, Arioka Y, Nakaya Y. Swallowing rehabilitation with nutrition therapy improves clinical outcome in patients with dysphagia at an acute care hospital. J Med Invest. 2014;61:353–360. doi: 10.2152/jmi.61.353CrossRefGoogle Scholar
  22. 22.
    Kokura Y, Wakabayashi H, Nishioka S, Maeda K. Nutritional intake is associated with activities of daily living and complications in older inpatients with stroke. Geriatr Gerontol Int. 2018;doi: 10.1111/ggi.13467.Google Scholar
  23. 23.
    Nii M, Maeda K, Wakabayashi H, Nishioka S, Tanaka A. Nutritional Improvement and Energy Intake Are Associated with Functional Recovery in Patients after Cerebrovascular Disorders. J Stroke Cerebrovasc Dis. 2016;25:57–62. doi: 10.1016/j. jstrokecerebrovasdis.2015.08.033.CrossRefGoogle Scholar
  24. 24.
    Inoue T, Misu S, Tanaka T, Sakamoto H, Iwata K, Chuman Y, Ono R. Inadequate Postoperative Energy Intake Relative to Total Energy Requirements Diminishes Acute Phase Functional Recovery from Hip Fracture. Arch Phys Med Rehabil. doi: 2018;10.1016/j.apmr.2018.06.012Google Scholar
  25. 25.
    Nishioka S, Wakabayashi H, Nishioka E, Yoshida T, Mori N, Watanabe R. Nutritional Improvement Correlates with Recovery of Activities of Daily Living among Malnourished Elderly Stroke Patients in the Convalescent Stage: A Cross–Sectional Study. J Acad Nutr Diet. 2016;116:837–843. doi: 10.1016/j.jand.2015.09.014.CrossRefGoogle Scholar
  26. 26.
    Nishioka S, Wakabayashi H, Momosaki R. Nutritional Status Changes and Activities of Daily Living after Hip Fracture in Convalescent Rehabilitation Units: A Retrospective Observational Cohort Study from the Japan Rehabilitation Nutrition Database. J Acad Nutr Diet. 2018;118:1270–1276. doi: 10.1016/j.jand.2018.02.012.CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Hidetaka Wakabayashi
    • 1
    Email author
  • R. Takahashi
    • 1
  • T. Murakami
    • 1
  1. 1.Department of Rehabilitation MedicineYokohama City University Medical CenterYokohama CityJapan

Personalised recommendations