The journal of nutrition, health & aging

, Volume 23, Issue 1, pp 35–41 | Cite as

Associations of Skeletal Muscle Mass, Lower-Extremity Functioning, and Cognitive Impairment in Community-Dwelling Older People in Japan

  • Hideaki IshiiEmail author
  • H. Makizako
  • T. Doi
  • K. Tsutsumimoto
  • H. Shimada



We examined whether skeletal muscle mass and lower extremity functioning are closely associated with multiple cognitive domains, including global cognition, memory, attention, executive functioning, and processing speed, in community-dwelling older Japanese adults.


A cross-sectional, population-based community study.


This study was conducted among community-living older people enrolled in the Obu Study of Health Promotion for the Elderly.


Participants comprised 5,104 adults (≥ 65 years, mean age: 71 years).


Data from 4273 participants were analyzed. Appendicular skeletal muscle mass was estimated from bioelectrical impedance analysis and expressed as appendicular skeletal muscle mass index (ASMI). Lower-extremity functioning was assessed by the Five-Times-Sit-to-Stand test (FTSS) and Timed Up and Go test (TUG). Cognitive functions were assessed by the Mini Mental State Examination, word list memory, Trail Making Test parts A and B, and Symbol Digit Substitution Task. Logistic regression analysis were performed to calculate odds ratios (ORs) of cognitive impairment in various domains among skeletal muscle mass, lower-extremity functioning levels adjusted for important demographic variables, and comorbidities.


Participants with lower ASMI and slower FTSS and TUG groups had lower cognitive functioning scores than did participants with higher ASMI and faster FTSS and TUG. The slowest quartiles (Q4) of FTSS and TUG were significantly associated with impaired global functioning (MMSE score < 24) compared to the fastest quartile (Q1) after multivariate adjustment (FTSS, OR = 1.46, 95% confidence interval (CI) = 1.12–1.90; TUG, OR = 1.65, 95% CI = 1.25–2.17). In other dimensions of cognitive functioning, FTSS and TUG were significantly associated with all cognitive impairment in the full adjustment model.


Lower-extremity functioning, rather than skeletal muscle mass, is closely related to multiple cognitive domains. This study suggests that maintaining lower-extremity functioning, rather than skeletal muscle mass, may be required for detecting and preventing cognitive impairment.

Key words

Cognition lower-extremity functioning mobility weakness community-dwelling older people 


  1. 1.
    Johnson JK, Lui LY, Yaffe K. Executive function, more than global cognition, predicts functional decline and mortality in elderly women. J Gerontol A Biol Sci Med Sci 2007;62:1134–1141. doi:10.1093/gerona/62.10.1134CrossRefGoogle Scholar
  2. 2.
    Makizako H, Shimada H, Doi T, et al. Cognitive functioning and walking speed in older adults as predictors of limitations in self-reported instrumental activity of daily living: prospective findings from the Obu Study of Health Promotion for the Elderly. Int J Environ Res Public Health 2015;12:3002–3013. doi:10.3390/ijerph120303002CrossRefGoogle Scholar
  3. 3.
    Dodge HH, Du Y, Saxton JA, et al. Cognitive domains and trajectories of functional independence in nondemented elderly persons. J Gerontol A Biol Sci Med Sci 2006;61:1330–1337. doi:0.1093/gerona/61.12.1330CrossRefGoogle Scholar
  4. 4.
    Liu LK, Lee WJ, Liu CLet al. Age-related skeletal muscle mass loss and physical performance in Taiwan: implications to diagnostic strategy of sarcopenia in Asia. Geriatr Gerontol Int 2013;13(4):964–971. doi:10.1111/ggi.12040CrossRefGoogle Scholar
  5. 5.
    Clouston SA, Brewster P, Kuh D, et al. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol Rev 2013;35:33–50. doi:10.1093/epirev/mxs004CrossRefGoogle Scholar
  6. 6.
    Nourhashémi F, Andrieu S, Gillette-Guyonnet S, et al. Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc 2002;50:1796–1801. doi:10.1046/j.1532-5415.2002.50507.xCrossRefGoogle Scholar
  7. 7.
    Burns JM, Johnson DK, Watts A, et al (2010) Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 2010;67:428–433. doi:10.1001/archneurol.2010.38CrossRefGoogle Scholar
  8. 8.
    Luchsinger JA, Biggs ML, Kizer JR, et al. Adiposity and cognitive decline in the cardiovascular health study. Neuroepidemiology 2013;40:274–281. doi:10.1159/000345136CrossRefGoogle Scholar
  9. 9.
    Buracchio T, Dodge HH, Howieson D, et al. The trajectory of gait speed preceding mild cognitive impairment. Arch Neurol 2010;67(8):980–986. doi:10.1001/ archneurol.2010.159CrossRefGoogle Scholar
  10. 10.
    Tanimoto Y, Watanabe M, Sun W, et al. Association between muscle mass and disability in performing instrumental activities of daily living (IADL) in communitydwelling elderly in Japan. Arch Gerontol Geriatr 2012;54:e230–e233. doi:10.1016/j. archger.2011.06.015CrossRefGoogle Scholar
  11. 11.
    Makizako H, Shimada H, Doi T, et al (in press) Predictive cutoff values of the Five- Times-Sit-to-Stand and Timed Up and Go Tests for disability incidence among community-dwelling older people. Phys Ther.Google Scholar
  12. 12.
    Demnitz N, Esser P, Dawes H, et al. A systematic review and meta-analysis of crosssectional studies examining the relationship between mobility and cognition in healthy older adults. Gait Posture 2016;50:164–174. doi:10.1016/j.gaitpost.2016.08.028CrossRefGoogle Scholar
  13. 13.
    Chang KV, Hsu TH, Wu WT, et al. Association between sarcopenia and cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc 2016;17(12):1164–e7. doi:10.1016/j.jamda.2016.09.013CrossRefGoogle Scholar
  14. 14.
    Shimada H, Makizako H, Lee S, et al. Impact of cognitive frailty on daily activities in older persons. J Nutr Health Aging 2016;20(7):729–735. doi:10.1007/s12603-016-0685-2CrossRefGoogle Scholar
  15. 15.
    Shimada H, Makizako H, Doi T, et al. Combined prevalence of frailty and mild cognitive decreasing in a population of elderly Japanese people. J Am Med Dir Assoc 2013;14:518–524. doi:10.1016/j.jamda.2013.03.010CrossRefGoogle Scholar
  16. 16.
    Bae S, Shimada H, Park H, et al. Association between body composition parameters and risk of mild cognitive impairment in older Japanese adults. Geriatr Gerontol Int 2017; 17: 2053–2059. doi: 10.1111/ggi.13018.CrossRefGoogle Scholar
  17. 17.
    Hirsch CH, Fried LP, Harris T, et al. Correlates of performance-based measures of muscle function in the elderly: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci. 1997;52:M192–200. doi:10.1093/gerona/52a.4.m192CrossRefGoogle Scholar
  18. 18.
    Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc 1991;39:142–148. doi:10.1111/j.1532-5415.1991.tb01616.xCrossRefGoogle Scholar
  19. 19.
    Makizako H, Shimada H, Park H, et al. Evaluation of multidimensional neurocognitive function using a tablet personal computer: test-retest reliability and validity in community-dwelling older adults. Geriatr Gerontol Int 2013;13:860–866. doi:10.1111/ggi.12014CrossRefGoogle Scholar
  20. 20.
    Tsutsumimoto K, Doi T, Shimada H, et al. Self-reported exhaustion associated with physical activity among older adults. Geriatr Gerontol Int 2016;16:625–630. doi:0.1111/ggi.12528CrossRefGoogle Scholar
  21. 21.
    Yesavage JA. Geriatric depression scale. Psychopharmacol Bull 1988;24:709–711.Google Scholar
  22. 22.
    Wirth R, Smoliner C, Sieber CC, et al. Cognitive function is associated with body composition and nutritional risk of geriatric patients. J Nutr Health Aging 2011;15:706–710. doi:10.1007/s12603-011-0089-2CrossRefGoogle Scholar
  23. 23.
    Kikkert LH, Vuillerme N, van Campen JP, et al. Walking ability to predict future cognitive decline in old adults: a scoping review. Ageing Res Rev 2016;27:1–14. doi:10.1016/j.arr.2016.02.001CrossRefGoogle Scholar
  24. 24.
    Doi T, Shimada H, Park H, et al. Cognitive function and falling among older adults with mild cognitive impairment and slow gait. Geriatr Gerontol Int 2015;15:1073- 1078. doi:10.1111/ggi.12407CrossRefGoogle Scholar
  25. 25.
    Mielke MM, Roberts RO, Savica R, et al. Assessing the temporal relationship between cognition and gait: slow gait predicts cognitive decline in the Mayo Clinic Study of Aging. J Gerontol A Biol Sci Med Sci 2013;68:929–937. doi:10.1093/gerona/gls256CrossRefGoogle Scholar
  26. 26.
    Fritz NE, McCarthy CJ, Adamo DE. Handgrip strength as a means of monitoring progression of cognitive decline—a scoping review. Ageing Res Rev 2017;35:112–123. doi:10.1016/j.arr.2017.01.004CrossRefGoogle Scholar
  27. 27.
    Boyle PA, Buchman AS, Wilson RS, et al. Physical frailty is associated with incident mild cognitive impairment in community-based older persons. J Am Geriatr Soc 2010;58:248–255. doi: 0.1111/j.1532-5415.2009.02671.xCrossRefGoogle Scholar
  28. 28.
    Lord SR, Murray SM, Chapman K, et al. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J Gerontol A Biol Sci Med Sci 2002;57:M539–M543. doi:10.1093/ gerona/57.8.m539CrossRefGoogle Scholar
  29. 29.
    Goodpaster BH, Park SW, Harris TB, et al. The loss of skeletal muscle strength, mass, and quality in older adults: the health, aging and body composition study. J Gerontol A Biol Sci Med Sci 2006;61:1059–1064. doi:10.1093/gerona/61.10.1059CrossRefGoogle Scholar
  30. 30.
    Huang CY, Hwang AC, Liu LK, et al. Association of dynapenia, sarcopenia, and cognitive impairment among community-dwelling older Taiwanese. Rejuvenation Res 2016;19:71–78. doi:10.1089/rej.2015.1710CrossRefGoogle Scholar
  31. 31.
    Janssen I, Heymsfield SB, Baumgartner RN, et al. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J Appl Physiol 2000;89:465–471.CrossRefGoogle Scholar

Copyright information

© Serdi and Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Hideaki Ishii
    • 1
    • 4
    Email author
  • H. Makizako
    • 1
    • 2
  • T. Doi
    • 1
  • K. Tsutsumimoto
    • 1
    • 3
  • H. Shimada
    • 1
  1. 1.Department of Preventive Gerontology, Center for Gerontology and Social ScienceNational Center for Geriatrics and GerontologyObu, AichiJapan
  2. 2.Department of Physical Therapy, School of Health Sciences, Faculty of MedicineKagoshima UniversityKagoshimaJapan
  3. 3.Japan Society for the Promotion of ScienceTokyoJapan
  4. 4.Section for Health Promotion, Department of Preventive Gerontology, Center for Gerontology and Social ScienceNational Center for Geriatrics and GerontologyObu City, Aichi PrefectureJapan

Personalised recommendations