Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption


Oysters hold a unique place within the field of aquaculture as one of the only organisms that is regularly shipped live to be consumed whole and raw. The microbiota of oysters is capable of adapting to a wide range of environmental conditions within their dynamic estuarine environments; however, human aquaculture practices can challenge the resilience of this microbial community. Several discrete stages in oyster cultivation and market processing can cause disruption to the oyster microbiota, thus increasing the possibility of proliferation by pathogens and spoilage bacteria. These same pressure points offer the opportunity for the application of probiotics to help decrease disease occurrence in stocks, improve product yields, minimize the risk of shellfish poisoning, and increase product shelf life. This review provides a summary of the current knowledge on oyster microbiota, the impact of aquaculture upon this community, and the current status of oyster probiotic development. In response to this biotechnological gap, the authors highlight opportunities of highest potential impact within the aquaculture pipeline and propose a strategy for oyster-specific probiotic candidate development.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    FAO (2018) The state of world fisheries and agriculture - meeting the sustainable development goals. Rome. http://www.fao.org/3/i9540en/i9540en.pdf. Accessed 14 Aug 2019

  2. 2.

    Cruz PM, Ibáñez AL, Hermosillo OAM, Saad HCR (2012) Use of probiotics in aquaculture. ISRN Microbiol:1–13. https://doi.org/10.5402/2012/916845

  3. 3.

    Olin P, Smith, J, Nabi, R (2011) Regional review on status and trends in aquaculture development in North America – 2010 FAO Fisheries and Aquaculture Circular No. 1061/2. Rome, FAO. 2011. 84 pp. http://www.fao.org/3/i2163e/i2163e00.pdf. Accessed 14 Aug 2019

  4. 4.

    Haskin Shellfish Research Laboratory at Rutgers NJAES. https://hsrl.rutgers.edu/. Accessed 10 Feb 2019

  5. 5.

    Calvo LM (2018) New Jersey shellfish aquaculture situation and outlook report 2016 production year. Rutgers NJ Agric. Experiment Station. http://njseagrant.org/wp-content/uploads/2018/04/NJAquacultureSurvey2016.pdf. Accessed 13 Aug 2019

  6. 6.

    Watermann BT, Herlyn M, Daehne B, Bergmann S, Meemken M, Kolodzey H (2008) Pathology and mass mortality of Pacific oysters, Crassostrea gigas (Thunberg), in 2005 at the East Frisian coast, Germany. J Fish Dis 31:621–630. https://doi.org/10.1111/j.1365-2761.2008.00953.x

  7. 7.

    Green TJ, Siboni N, King WL, Labbate M, Seymour JR, Raftos D (2018) Simulated marine heat wave alters abundance and structure of Vibrio populations associated with the Pacific oyster resulting in a mass mortality event. Microb Ecol 77:736–747. https://doi.org/10.1007/s00248-018-1242-9

  8. 8.

    Newton AE, Garrett N, Stroika SG, Halpin JL, Turnsek M, Mody RK, Centers for Disease Control and Prevention (CDC) (2014) Increase in Vibrio parahaemolyticus infections associated with consumption of Atlantic coast shellfish — 2013. Morb Mortal Wkly Rep 63:335–336 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5779391/pdf/335-336.pdf

  9. 9.

    Taylor M, Cheng J, Sharma D, Bitzikos O, Gustafson R, Fyfe M, Greve R, Murti M, Stone J, Honish L, Mah V, Punja N, Hexemer A, McIntyre L, Henry B, Kendall P, Atkinson R, Buenaventura E, Martinez-Perez A, Galanis E, Team TOI (2018) Outbreak of Vibrio parahaemolyticus associated with consumption of raw oysters in Canada, 2015. Foodborne Pathog Dis 15:554–559. https://doi.org/10.1089/fpd.2017.2415

  10. 10.

    Bruner DM, Huth WL, McEvoy DM, Morgan OA (2014) Consumer valuation of food safety: the case of postharvest processed oysters. Agric Resour Econ Rev Durh 43:300–318. https://doi.org/10.1017/S1068280500004330

  11. 11.

    de Lorgeril J, Escoubas J-M, Loubiere V, Pernet F, le Gall P, Vergnes A, Aujoulat F, Jeannot JL, Jumas-Bilak E, Got P, Gueguen Y, Destoumieux-Garzón D, Bachère E (2018) Inefficient immune response is associated with microbial permissiveness in juvenile oysters affected by mass mortalities on field. Fish Shellfish Immunol 77:156–163. https://doi.org/10.1016/j.fsi.2018.03.027

  12. 12.

    Newaj-Fyzul A, Al-Harbi AH, Austin B (2014) Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture 431:1–11. https://doi.org/10.1016/j.aquaculture.2013.08.026

  13. 13.

    Lim HJ, Kapareiko D, Schott EJ et al (2011) Isolation and evaluation of new probiotic bacteria for use in shellfish hatcheries: I. Isolation and screening for bioactivity. J Shellfish Res 30:609–615. https://doi.org/10.2983/035.030.0303

  14. 14.

    (2018) Good news, bad news for next-gen probiotic. In: https://www.aquaculturenorthamerica.com. https://www.aquaculturenorthamerica.com/good-news-bad-news-for-next-gen-probiotic-1972/. Accessed 12 Aug 2019

  15. 15.

    Defer D, Desriac F, Henry J, Bourgougnon N, Baudy-Floc’h M, Brillet B, le Chevalier P, Fleury Y (2013) Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol 34:1439–1447. https://doi.org/10.1016/j.fsi.2013.03.357

  16. 16.

    Kassaify ZG, Hajj RHE, Hamadeh SK et al (2009) Impact of oil spill in the Mediterranean Sea on biodiversified bacteria in oysters. J Coast Res 25:469–473. https://doi.org/10.2112/07-0962.1

  17. 17.

    Stief P, Poulsen M, Nielsen LP, Brix H, Schramm A (2009) Nitrous oxide emission by aquatic macrofauna. Proc Natl Acad Sci U S A 106:4296–4300. https://doi.org/10.1073/pnas.0808228106

  18. 18.

    Arfken A, Song B, Bowman JS, Piehler M (2017) Denitrification potential of the eastern oyster microbiome using a 16S rRNA gene based metabolic inference approach. PLoS One 12(9):e0185071. https://doi.org/10.1371/journal.pone.0185071

  19. 19.

    Fernandez-Piquer J, Bowman JP, Ross T, Tamplin ML (2012) Molecular analysis of the bacterial communities in the live Pacific oyster (Crassostrea gigas) and the influence of postharvest temperature on its structure. J Appl Microbiol 112:1134–1143. https://doi.org/10.1111/j.1365-2672.2012.05287.x

  20. 20.

    Prapaiwong N, Wallace RK, Arias CR (2009) Bacterial loads and microbial composition in high pressure treated oysters during storage. Int J Food Microbiol 131:145–150. https://doi.org/10.1016/j.ijfoodmicro.2009.02.014

  21. 21.

    Khan B, Clinton SM, Hamp TJ, Oliver JD, Ringwood AH (2018) Potential impacts of hypoxia and a warming ocean on oyster microbiomes. Mar Environ Res 139:27–34. https://doi.org/10.1016/j.marenvres.2018.04.018

  22. 22.

    King GM, Judd C, Kuske CR, Smith C (2012) Analysis of stomach and gut microbiomes of the eastern oyster (Crassostrea virginica) from coastal Louisiana, USA. PLoS One 7(12):e51475. https://doi.org/10.1371/journal.pone.0051475

  23. 23.

    Goedken M, Morsey B, Sunila I et al (2005) The effects of temperature and salinity on apoptosis of Crassostrea virginica hemocytes and Perkinsus marinus. J Shellfish Res 24:177–183. https://doi.org/10.2983/0730-8000(2005)24[177:TEOTAS]2.0.CO;2

  24. 24.

    Bushek D, Ford SE, Burt I (2012) Long-term patterns of an estuarine pathogen along a salinity gradient. J Mar Res 70:225–251. https://doi.org/10.1357/002224012802851968

  25. 25.

    Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483. https://doi.org/10.1186/1471-2164-11-483

  26. 26.

    Pierce ML, Ward JE (2018) Microbial ecology of the Bivalvia, with an emphasis on the family Ostreidae. J Shellfish Res 37:793–806. https://doi.org/10.2983/035.037.0410

  27. 27.

    King WL, Jenkins C, Go J, Siboni N, Seymour JR, Labbate M (2019) Characterisation of the Pacific oyster microbiome during a summer mortality event. Microb Ecol 77(2):502–512. https://doi.org/10.1007/s00248-018-1226-9

  28. 28.

    Trabal Fernández N, Mazón-Suástegui JM, Vázquez-Juárez R, Ascencio-Valle F, Romero J (2014) Changes in the composition and diversity of the bacterial microbiota associated with oysters (Crassostrea corteziensis, Crassostrea gigas and Crassostrea sikamea) during commercial production. FEMS Microbiol Ecol 88:69–83. https://doi.org/10.1111/1574-6941.12270

  29. 29.

    Trabal N, Mazón-suástegui JM, Vázquez-juárez R et al (2012) Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites. Microb Ecol Heidelb 64:555–569. https://doi.org/10.1007/s00248-012-0039-5

  30. 30.

    Asmani K, Petton B, Le Grand J et al (2016) Establishment of microbiota in larval culture of Pacific oyster, Crassostrea gigas. Aquaculture 464:434–444. https://doi.org/10.1016/j.aquaculture.2016.07.020

  31. 31.

    Laroche O, Symonds JE, Smith KF et al (2018) Understanding bacterial communities for informed biosecurity and improved larval survival in Pacific oysters. Aquaculture 497:164–173. https://doi.org/10.1016/j.aquaculture.2018.07.052

  32. 32.

    Stevick RJ, Sohn S, Modak TH, Nelson DR, Rowley DC, Tammi K, Smolowitz R, Markey Lundgren K, Post AF, Gómez-Chiarri M (2019) Bacterial community dynamics in an oyster hatchery in response to probiotic treatment. Front Microbiol 10:1060. https://doi.org/10.3389/fmicb.2019.01060

  33. 33.

    Lokmer A, Goedknegt MA, Thieltges DW, Fiorentino D, Kuenzel S, Baines JF, Wegner KM (2016) Spatial and temporal dynamics of Pacific oyster hemolymph microbiota across multiple scales. Front Microbiol 7:1367. https://doi.org/10.3389/fmicb.2016.01367

  34. 34.

    Wang D, Zhang Q, Cui Y, Shi X (2014) Seasonal dynamics and diversity of bacteria in retail oyster tissues. Int J Food Microbiol 173:14–20. https://doi.org/10.1016/j.ijfoodmicro.2013.12.008

  35. 35.

    Nash S, Rahman MS (2019) Short-term heat stress impairs testicular functions in the American oyster, Crassostrea virginica: molecular mechanisms and induction of oxidative stress and apoptosis in spermatogenic cells. Mol Reprod Dev 86:1444–1458. https://doi.org/10.1002/mrd.23268

  36. 36.

    Wegner KM, Volkenborn N, Peter H, Eiler A (2013) Disturbance induced decoupling between host genetics and composition of the associated microbiome. BMC Microbiol Lond 13:252. https://doi.org/10.1186/1471-2180-13-252

  37. 37.

    Banker R, Vermeij GJ (2018) Oyster microbial communities and implications for chalky deposit formation. Hydrobiologia 816:121–135. https://doi.org/10.1007/s10750-018-3569-0

  38. 38.

    Vezzulli L, Stagnaro L, Grande C, Tassistro G, Canesi L, Pruzzo C (2018) Comparative 16SrDNA gene-based microbiota profiles of the Pacific oyster (Crassostrea gigas) and the Mediterranean mussel (Mytilus galloprovincialis) from a shellfish farm (Ligurian Sea, Italy). Microb Ecol 75:495–504. https://doi.org/10.1007/s00248-017-1051-6

  39. 39.

    Bernal MG, Fernández NT, Lastra PES et al (2017) Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster. J Appl Microbiol 122:601–614. https://doi.org/10.1111/jam.13382

  40. 40.

    Chen H, Liu Z, Wang M, Chen S, Chen T (2013) Characterisation of the spoilage bacterial microbiota in oyster gills during storage at different temperatures. J Sci Food Agric 93:3748–3754. https://doi.org/10.1002/jsfa.6237

  41. 41.

    Ashie INA, Smith JP, Simpson BK, Haard DNF (1996) Spoilage and shelf-life extension of fresh fish and shellfish. Crit Rev Food Sci Nutr 36:87–121. https://doi.org/10.1080/10408399609527720

  42. 42.

    Linton M, Clements JMJM, Patterson MF (2003) Changes in the microbiological quality of shellfish, brought about by treatment with high hydrostatic pressure. Int J Food Sci Technol 38:713–727. https://doi.org/10.1046/j.1365-2621.2003.00724.x

  43. 43.

    He H, Adams RM, Farkas DF, Morrissey MT (2002) Use of high-pressure processing for oyster shucking and shelf-life extension. J Food Sci 67:640–645. https://doi.org/10.1111/j.1365-2621.2002.tb10652.x

  44. 44.

    Cao R, Xue C-H, Liu Q, Xue Y (2009) Microbiological, chemical, and sensory assessment of Pacific oysters (Crassostrea gigas) stored at different temperatures. Czech J Food Sci 27:102–108. https://doi.org/10.17221/166/2008-CJFS

  45. 45.

    Huang Y-S, Hwang C-A, Huang L et al (2018) The risk of Vibrio parahaemolyticus infections associated with consumption of raw oysters as affected by processing and distribution conditions in Taiwan. Food Control 86:101–109. https://doi.org/10.1016/j.foodcont.2017.10.022

  46. 46.

    Abd Karim MM (2012) Mechanisms of protection of probiotics against bacterial pathogens in oyster aquaculture. Diss Masters Theses Campus Access 1–157. https://digitalcommons.uri.edu/dissertations/AAI3546827/. Accessed 14 Aug 2019

  47. 47.

    Sohn S (2016) Evaluation of the efficacy of candidate probiotics for disease prevention in shellfish hatcheries. Ph.D. Dissertation, University of Rhode Island. https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1470&context=oa_diss. Accessed 14 Aug 2019

  48. 48.

    Kesarcodi-Watson A, Miner P, Nicolas J-L, Robert R (2012) Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture 344–349:29–34. https://doi.org/10.1016/j.aquaculture.2012.02.029

  49. 49.

    Gibson LF, Woodworth J, George AM (1998) Probiotic activity of Aeromonas media on the Pacific oyster, Crassostrea gigas, when challenged with Vibrio tubiashii. Aquaculture 169:111–120. https://doi.org/10.1016/S0044-8486(98)00369-X

  50. 50.

    Douillet PA (1991) Beneficial effects of bacteria on the culture of larvae of the Pacific oyster Crassostrea gigas (Thunberg). Ph.D. Dissertation, Oregon State University. https://ir.library.oregonstate.edu/downloads/bz60d0505. Accessed 14 August 2019

  51. 51.

    Douillet P, Langdon CJ (1993) Effects of marine bacteria on the culture of axenic oyster Crassostrea gigas (Thunberg) larvae. Biol Bull 184:36–51. https://doi.org/10.2307/1542378

  52. 52.

    Douillet PA, Langdon CJ (1994) Use of a probiotic for the culture of larvae of the Pacific oyster (Crassostrea gigas Thunberg). Aquaculture 119:25–40. https://doi.org/10.1016/0044-8486(94)90441-3

  53. 53.

    Brown C (1973) The effects of some selected bacteria on embryos and larvae of the American oyster, Crassostrea virginica. J Invertebr Pathol 21:215–223. https://doi.org/10.1016/0022-2011(73)90206-1

  54. 54.

    Aguilar-Macías OL, Ojeda-Ramírez JJ, Campa-Córdova AI, Saucedo PE (2010) Evaluation of natural and commercial probiotics for improving growth and survival of the pearl oyster, Pinctada mazatlanica, during late hatchery and early field culturing. J World Aquac Soc 41:447–454. https://doi.org/10.1111/j.1749-7345.2010.00386.x

  55. 55.

    Vargas-Albores F, Martínez-Porchas M, Arvayo MA et al (2016) Immunophysiological response of Pacific white shrimp exposed to a probiotic mixture of Proteobacteria and Firmicutes in farm conditions. North Am J Aquac 78:193–202. https://doi.org/10.1080/15222055.2016.1167797

  56. 56.

    Tan LT-H, Chan K-G, Lee L-H, Goh B-H (2016) Streptomyces bacteria as potential probiotics in aquaculture. Front Microbiol 7:79. https://doi.org/10.3389/fmicb.2016.00079

  57. 57.

    Dao CA (2015) Chemical investigation of candidate probiotics in aquaculture and formulation of a probiotic agent for oyster larviculure. Ph.D. Dissertation, University of Rhode Island. https://digitalcommons.uri.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=1317&context=oa_diss. Accessed 13 Aug 2019

  58. 58.

    Karim M, Zhao W, Rowley D et al (2013) Probiotic strains for shellfish aquaculture: protection of eastern oyster, Crassostrea virginica, larvae and juveniles against bacterial challenge. J Shellfish Res 32:401–408. https://doi.org/10.2983/035.032.0220

  59. 59.

    Kang C-H, Gu T, So J-S (2018) Possible probiotic lactic acid bacteria isolated from oysters (Crassostrea gigas). Probiotics Antimicrob Proteins 10:728–739. https://doi.org/10.1007/s12602-017-9315-5

  60. 60.

    Elston R, Humphrey K, Gee A et al (2004) Progress in the development of effective probiotic bacteria for bivalve shellfish hatcheries and nurseries. J Shellfish Res 23:288–289

  61. 61.

    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. https://doi.org/10.1111/j.1574-6976.2008.00123.x

  62. 62.

    Ribeiro V, Albino LFT, Rostagno HS et al (2014) Effects of the dietary supplementation of Bacillus subtilis levels on performance, egg quality and excreta moisture of layers. Anim Feed Sci Technol 195:142–146. https://doi.org/10.1016/j.anifeedsci.2014.06.001

  63. 63.

    Huang Z, Wan R, Song X, Liu Y, Hallerman E, Dong D, Zhai J, Zhang H, Sun L (2016) Metagenomic analysis shows diverse, distinct bacterial communities in biofilters among different marine recirculating aquaculture systems. Aquac Int 24:1393–1408. https://doi.org/10.1007/s10499-016-9997-9

  64. 64.

    Schreier HJ, Mirzoyan N, Saito K (2010) Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotechnol 21:318–325. https://doi.org/10.1016/j.copbio.2010.03.011

  65. 65.

    King WL, Jenkins C, Seymour JR, Labbate M (2019) Oyster disease in a changing environment: decrypting the link between pathogen, microbiome and environment. Mar Environ Res 143:124–140. https://doi.org/10.1016/j.marenvres.2018.11.007

  66. 66.

    Schmitt P, de Lorgeril J, Gueguen Y et al (2012) Expression, tissue localization and synergy of antimicrobial peptides and proteins in the immune response of the oyster Crassostrea gigas. Dev Comp Immunol 37:363–370. https://doi.org/10.1016/j.dci.2012.01.004

  67. 67.

    Lokmer A, Kuenzel S, Baines JF, Wegner KM (2016) The role of tissue-specific microbiota in initial establishment success of Pacific oysters. Environ Microbiol 18:970–987. https://doi.org/10.1111/1462-2920.13163

  68. 68.

    Schmitt P, Wilmes M, Pugnière M, Aumelas A, Bachère E, Sahl HG, Schneider T, Destoumieux-Garzón D (2010) Insight into invertebrate defensin mechanism of action: oyster defensins inhibit peptidoglycan biosynthesis by binding to lipid II. J Biol Chem 285:29208–29216. https://doi.org/10.1074/jbc.M110.143388

  69. 69.

    Wesseling W, Wittka S, Kroll S et al (2015) Functionalised ceramic spawning tiles with probiotic Pseudoalteromonas biofilms designed for clownfish aquaculture. Aquaculture 446:57–66. https://doi.org/10.1016/j.aquaculture.2015.04.017

  70. 70.

    Cho JY (2012) Algicidal activity of marine Alteromonas sp. KNS-16 and isolation of active compounds. Biosci Biotechnol Biochem 76:1452–1458. https://doi.org/10.1271/bbb.120102

  71. 71.

    Sankar SA, Lagier J-C, Pontarotti P, Raoult D, Fournier PE (2015) The human gut microbiome, a taxonomic conundrum. Syst Appl Microbiol 38:276–286. https://doi.org/10.1016/j.syapm.2015.03.004

  72. 72.

    D’Argenio V, Salvatore F (2015) The role of the gut microbiome in the healthy adult status. Clin Chim Acta 451:97–102. https://doi.org/10.1016/j.cca.2015.01.003

  73. 73.

    Pugh ND, Edwall D, Lindmark L, Kousoulas KG, Iyer AV, Haron MH, Pasco DS (2015) Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A (H1N1) virus infection. Phytomedicine 22:271–276. https://doi.org/10.1016/j.phymed.2014.12.006

  74. 74.

    Martin SJ, Baskaran UL, Vedi M, Sabina EP (2014) Attenuation of anti-tuberculosis therapy induced hepatotoxicity by Spirulina fusiformis, a candidate food supplement. Toxicol Mech Methods 24:584–592. https://doi.org/10.3109/15376516.2014.956910

  75. 75.

    Varga L, Szigeti J, Kovács R, Földes T, Buti S (2002) Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). J Dairy Sci 85:1031–1038. https://doi.org/10.3168/jds.S0022-0302(02)74163-5

  76. 76.

    Oriquat GA, Ali MA, Mahmoud SA et al (2018) Improving hepatic mitochondrial biogenesis as a postulated mechanism for the antidiabetic effect of Spirulina platensis in comparison with metformin. Appl Physiol Nutr Metab 44:357–364. https://doi.org/10.1139/apnm-2018-0354

  77. 77.

    Yang C, Hao R, Deng Y, Liao Y, Wang Q, Sun R, Jiao Y, du X (2017) Effects of protein sources on growth, immunity and antioxidant capacity of juvenile pearl oyster Pinctada fucata martensii. Fish Shellfish Immunol 67:411–418. https://doi.org/10.1016/j.fsi.2017.06.037

  78. 78.

    Mongkolthanaruk W (2012) Classification of Bacillus beneficial substances related to plants, humans and animals. J Microbiol Biotechnol 22:1597–1604. https://doi.org/10.4014/jmb.1204.04013

  79. 79.

    Hong HA, Khaneja R, Tam NMK, Cazzato A, Tan S, Urdaci M, Brisson A, Gasbarrini A, Barnes I, Cutting SM (2009) Bacillus subtilis isolated from the human gastrointestinal tract. Res Microbiol 160:134–143. https://doi.org/10.1016/j.resmic.2008.11.002

  80. 80.

    Ilinskaya ON, Ulyanova VV, Yarullina DR, Gataullin IG (2017) Secretome of intestinal bacilli: a natural guard against pathologies. Front Microbiol 8:1666. https://doi.org/10.3389/fmicb.2017.01666

  81. 81.

    Elshaghabee FMF, Rokana N, Gulhane RD, Sharma C, Panwar H (2017) Bacillus as potential probiotics: status, concerns, and future perspectives. Front Microbiol 8:1490. https://doi.org/10.3389/fmicb.2017.01490

  82. 82.

    Donato V, Ayala FR, Cogliati S, Bauman C, Costa JG, Leñini C, Grau R (2017) Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway. Nat Commun 8:14322–14315. https://doi.org/10.1038/ncomms14332

  83. 83.

    Ayala FR, Bauman C, Cogliati S et al (2017) Microbial flora, probiotics, Bacillus subtilis and the search for a long and healthy human longevity. Microb Cell 4:133–136. https://doi.org/10.15698/mic2017.04.569

  84. 84.

    Hernández-Zárate G, Olmos-Soto J (2006) Identification of bacterial diversity in the oyster Crassostrea gigas by fluorescent in situ hybridization and polymerase chain reaction. J Appl Microbiol 100:664–672. https://doi.org/10.1111/j.1365-2672.2005.02800.x

Download references


MLC was supported by the Ministry of Science and Higher Education of the Russian Federation (Project Number 075-15-2019-1880).

Author information

Correspondence to Heidi Yeh.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yeh, H., Skubel, S.A., Patel, H. et al. From Farm to Fingers: an Exploration of Probiotics for Oysters, from Production to Human Consumption. Probiotics & Antimicro. Prot. (2020). https://doi.org/10.1007/s12602-019-09629-3

Download citation


  • Oysters
  • Crassostrea
  • Aquaculture
  • Microbiota
  • Probiotics