Advertisement

Bacteriocin of Pediococcus acidilactici HW01 Inhibits Biofilm Formation and Virulence Factor Production by Pseudomonas aeruginosa

  • Da-Hye Lee
  • Bong Sun Kim
  • Seok-Seong KangEmail author
Article

Abstract

Pseudomonas aeruginosa is a potential source of food contamination that leads to food spoilage and infections as a result of the generation of biofilm and virulence factors. In the present study, we demonstrate that bacteriocin produced by Pediococcus acidilactici HW01 (HW01 bacteriocin) effectively inhibited the biofilm formation of Ps. aeruginosa (66.41, 45.77, and 21.73% of biofilm formation at 0.5, 1, and 2 mg/mL of HW01 bacteriocin, respectively) as well as the production of virulence factors. By means of a microtiter plate method and scanning electron microscopy, HW01 bacteriocin inhibited biofilm formation by Ps. aeruginosa in a dose-dependent manner. Although the viability of biofilm cells of Ps. aeruginosa was reduced in the presence of HW01 bacteriocin, the viability of planktonic cells of Ps. aeruginosa was not affected by HW01 bacteriocin (2.0 × 109 CFU/mL vs. 2.4 × 109 CFU/mL in the absence and the presence of HW01 bacteriocin, respectively). Additionally, HW01 bacteriocin decreased the twitching motility of Ps. aeruginosa as well as the production of virulence factors, such as pyocyanin, protease, and rhamnolipid. Furthermore, HW01 bacteriocin significantly inhibited Ps. aeruginosa biofilm formation on the surface of stainless steel (57% reduction at 24 h and 83% reduction at 72 h). These results indicate that HW01 bacteriocin is an effective antagonist of Ps. aeruginosa as a result of its ability to inhibit biofilm formation and the production of virulence factors.

Keywords

Pediococcus acidilactici Bacteriocin Pseudomonas aeruginosa Biofilm Virulence factor 

Notes

Acknowledgments

The authors are grateful to Prof. Wang June Kim, Department of Food Science and Biotechnology, Dongguk University, Goyang, Korea, for providing Ped. acidilactici HW01 used in this study.

Funding Information

This work was supported by a grant from the National Research Foundation of Korea, which is funded by the Korean government (NRF-2017R1D1A1B03028730).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gu X, Sun Y, Tu K, Dong Q, Pan L (2016) Predicting the growth situation of Pseudomonas aeruginosa on agar plates and meat stuffs using gas sensors. Sci Rep 6:38721PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Neto NJG, Luz ID, Honorio VG, da Conceicao ML, de Souza EL (2012) Pseudomonas aeruginosa cells adapted to Rosmarinus officinalis L. essential oil and 1,8-cineole acquire no direct and cross protection in a meat-based broth. Food Res Int 49:143–146CrossRefGoogle Scholar
  3. 3.
    Liu M, Gray JM, Griffiths MW (2006) Occurrence of proteolytic activity and N-acyl-homoserine lactone signals in the spoilage of aerobically chill-stored proteinaceous raw foods. J Food Prot 69:2729–2737PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dunstall G, Rowe MT, Wisdom GB, Kilpatrick D (2005) Effect of quorum sensing agents on the growth kinetics of Pseudomonas spp. of raw milk origin. J Dairy Res 72:276–280PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Marchand S, Vandriesche G, Coorevits A, Coudijzer K, De Jonghe V, Dewettinck K, De Vos P, Devreese B, Heyndrickx M, De Block J (2009) Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 133:68–77PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Allydice-Francis K, Brown PD (2012) Diversity of antimicrobial resistance and virulence determinants in Pseudomonas aeruginosa associated with fresh vegetables. Int J Microbiol 2012:426241PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gunduz GT, Tuncel G (2006) Biofilm formation in an ice cream plant. Antonie Van Leeuwenhoek 89:329–336PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Galie S, Garcia-Gutierrez C, Miguelez EM, Villar CJ, Lombo F (2018) Biofilms in the food industry: health aspects and control methods. Front Microbiol 9:898PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Hoiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PO, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3(2):55–65PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N (2011) Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 55:4469–4474PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Hengzhuang W, Wu H, Ciofu O, Song Z, Hoiby N (2012) In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection. Antimicrob Agents Chemother 56:2683–2690PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122PubMedCrossRefGoogle Scholar
  14. 14.
    Hoiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Srey S, Jahid IK, Ha SD (2013) Biofilm formation in food industries: a food safety concern. Food Control 31:572–585CrossRefGoogle Scholar
  16. 16.
    Balloy V, Verma A, Kuravi S, Si-Tahar M, Chignard M, Ramphal R (2007) The role of flagellin versus motility in acute lung disease caused by Pseudomonas aeruginosa. J Infect Dis 196:289–296PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jorgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524PubMedCrossRefGoogle Scholar
  18. 18.
    Chen JR, Rossman ML, Pawar DM (2007) Attachment of enterohemorrhagic Escherichia coli to the surface of beef and a culture medium. Lwt-Food Sci Technol 40:249–254CrossRefGoogle Scholar
  19. 19.
    Sharma M, Anand SK (2002) Characterization of constitutive microflora of biofilms in dairy processing lines. Food Microbiol 19:627–636CrossRefGoogle Scholar
  20. 20.
    Jessen B, Lammert L (2003) Biofilm and disinfection in meat processing plants. Int Biodeterior Biodegradation 51:265–269CrossRefGoogle Scholar
  21. 21.
    Okuda K, Zendo T, Sugimoto S, Iwase T, Tajima A, Yamada S, Sonomoto K, Mizunoe Y (2013) Effects of bacteriocins on methicillin-resistant Staphylococcus aureus biofilm. Antimicrob Agents Chemother 57:5572–5579PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Al-Mathkhury HJ, Ali AS, Ghafil JA (2011) Antagonistic effect of bacteriocin against urinary catheter associated Pseudomonas aeruginosa biofilm. N Am J Med Sci 3:367–370PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Han GG, Song AA, Kim EB, Yoon SH, Bok JD, Cho CS, Kil DY, Kang SK, Choi YJ (2017) Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling. Appl Microbiol Biotechnol 101:5353–5363PubMedCrossRefGoogle Scholar
  24. 24.
    Altuntas EG, Cosansu S, Ayhan K (2010) Some growth parameters and antimicrobial activity of a bacteriocin-producing strain Pediococcus acidilactici 13. Int J Food Microbiol 141:28–31PubMedCrossRefGoogle Scholar
  25. 25.
    Anastasiadou S, Papagianni M, Filiousis G, Ambrosiadis I, Koidis P (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol 99:5384–5390PubMedCrossRefGoogle Scholar
  26. 26.
    Soccol CR, Vandenberghe LPD, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JD, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotech 48:413–434Google Scholar
  27. 27.
    Ahn HW, Kim JS, Kim WJ (2017) Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control 80:59–66CrossRefGoogle Scholar
  28. 28.
    Kim N-N, Kim WJ, Kang S-S (2019) Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control 98:274–280CrossRefGoogle Scholar
  29. 29.
    Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A (2018) Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb Pathog 121:190–197PubMedCrossRefGoogle Scholar
  30. 30.
    El-Shaer S, Shaaban M, Barwa R, Hassan R (2016) Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl beta-naphthylamide. J Med Microbiol 65:1194–1204PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Wilhelm S, Gdynia A, Tielen P, Rosenau F, Jaeger KE (2007) The autotransporter esterase EstA of Pseudomonas aeruginosa is required for rhamnolipid production, cell motility, and biofilm formation. J Bacteriol 189:6695–6703PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ochsner UA, Koch AK, Fiechter A, Reiser J (1994) Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol 176:2044–2054PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wu H, Lee B, Yang L, Wang H, Givskov M, Molin S, Hoiby N, Song Z (2011) Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol Med Microbiol 62:49–56PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Rossi C, Serio A, Chaves-Lopez C, Anniballi F, Auricchio B, Goffredo E, Cenci-Goga BT, Lista F, Fillo S, Paparella A (2018) Biofilm formation, pigment production and motility in Pseudomonas spp. isolated from the dairy industry. Food Control 86:241–248CrossRefGoogle Scholar
  35. 35.
    Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y, Manske C, Schubert K, Bode HB, Heermann R (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9:573–578PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kanatani K, Oshimura M, Sano K (1995) Isolation and characterization of acidocin A and cloning of the bacteriocin gene from Lactobacillus acidophilus. Appl Environ Microbiol 61:1061–1067PubMedPubMedCentralGoogle Scholar
  37. 37.
    Perez RH, Zendo T, Sonomoto K (2014) Novel bacteriocins from lactic acid bacteria (LAB): various structures and applications. Microb Cell Fact 13 Suppl 1:S3PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Field D, Seisling N, Cotter PD, Ross RP, Hill C (2016) Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Front Microbiol 7:1713PubMedPubMedCentralGoogle Scholar
  39. 39.
    Mathur H, Field D, Rea MC, Cotter PD, Hill C, Ross RP (2018) Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 4:9PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sharma V, Harjai K, Shukla G (2018) Effect of bacteriocin and exopolysaccharides isolated from probiotic on P-aeruginosa PAO1 biofilm. Folia Microbiol 63:181–190CrossRefGoogle Scholar
  41. 41.
    de la Fuente-Nunez C, Korolik V, Bains M, Nguyen U, Breidenstein EB, Horsman S, Lewenza S, Burrows L, Hancock RE (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56:2696–2704PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Cady NC, McKean KA, Behnke J, Kubec R, Mosier AP, Kasper SH, Burz DS, Musah RA (2012) Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One 7:e38492PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Alipour M, Suntres ZE, Lafrenie RM, Omri A (2010) Attenuation of Pseudomonas aeruginosa virulence factors and biofilms by co-encapsulation of bismuth-ethanedithiol with tobramycin in liposomes. J Antimicrob Chemother 65:684–693PubMedCrossRefGoogle Scholar
  44. 44.
    O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zhang QQ, Rui X, Li W, Chen XH, Jiang M, Dong MS (2016) Anti-swarming and -biofilm activities of rose phenolic extract during simulated in vitro gastrointestinal digestion. Food Control 64:189–195CrossRefGoogle Scholar
  46. 46.
    Li T, Wang D, Liu N, Ma Y, Ding T, Mei Y, Li J (2018) Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas fluorescens by cinnamaldehyde. Int J Food Microbiol 269:98–106PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kim Y, Oh S, Park S, Seo JB, Kim SH (2008) Lactobacillus acidophilus reduces expression of enterohemorrhagic Escherichia coli O157 : H7 virulence factors by inhibiting autoinducer-2-like activity. Food Control 19:1042–1050CrossRefGoogle Scholar
  48. 48.
    Wang HH, Ye KP, Zhang QQ, Dong Y, Xu XL, Zhou GH (2013) Biofilm formation of meat-borne Salmonella enterica and inhibition by the cell-free supernatant from Pseudomonas aeruginosa. Food Control 32:650–658CrossRefGoogle Scholar
  49. 49.
    Kim YG, Lee JH, Kim SI, Baek KH, Lee J (2015) Cinnamon bark oil and its components inhibit biofilm formation and toxin production. Int J Food Microbiol 195:30–39PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Das T, Kutty SK, Tavallaie R, Ibugo AI, Panchompoo J, Sehar S, Aldous L, Yeung AW, Thomas SR, Kumar N, Gooding JJ, Manefield M (2015) Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation. Sci Rep 5:8398PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wilson R, Sykes DA, Watson D, Rutman A, Taylor GW, Cole PJ (1988) Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium. Infect Immun 56:2515–2517PubMedPubMedCentralGoogle Scholar
  52. 52.
    Davey ME, Caiazza NC, O’Toole GA (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol 185:1027–1036PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Wang HH, Cai LL, Li YH, Xu XL, Zhou GH (2018) Biofilm formation by meat-borne Pseudomonas fluorescens on stainless steel and its resistance to disinfectants. Food Control 91:397–403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Food Science and BiotechnologyCollege of Life Science and Biotechnology, Dongguk UniversityGoyang-siRepublic of Korea

Personalised recommendations