Advertisement

Immunomodulatory Effect of Lactobacillus casei in a Murine Model of Colon Carcinogenesis

  • Josefina Casas-Solís
  • María del Rosario Huizar-López
  • Cesar Antonio Irecta-Nájera
  • María Luisa Pita-López
  • Anne SanterreEmail author
Article

Abstract

We previously reported beneficial effects of the probiotic strain Lactobacillus casei 393 in hindering colon carcinogenesis in a 1,2-dimethylhydrazine (DMH)-induced BALB/c mouse model of colon cancer. In the present study, we investigated the effect of preventive administration of L. casei 393 on the levels of selected pro- and anti-inflammatory circulating cytokines, as well as subpopulations of splenic T cells. The resulting experimental data on IFNγ, TNFα, IL-10, and colon histological features demonstrated that administration of L. casei 2 weeks before DMH treatment impaired the pro-inflammatory effect of DMH, while maintaining the levels of the three cytokines as well as colon histology; it also modulated splenic CD4+, CD8+, and NK T cell subpopulations. The preventive administration of L. casei to DMH-treated mice increased IL-17A synthesis and Treg percentages, further indicating a tumor-protecting role. Together, the results suggest that the colon-cancer-protective properties of L. casei 393 involve the dampening of inflammation through cytokine homeostasis and the maintenance of a healthy T cell subpopulation dynamic. For these reasons, probiotics such as L. casei may contribute to the health of the host as they promote optimal control of the immune response. Further, they may be used as prophylactic agents in combination with standard therapies against colon cancer.

Keywords

Lactobacillus casei Colon carcinogenesis 1, 2-Dimethylhydrazine Serum cytokines Splenic T cell subpopulations Flow cytometry 

Notes

Acknowledgments

Our special thanks to M.C. Veronica Carolina Rosas Espinoza for her guidance with statistical analyses. We are grateful to Claudia Copeland, Ph.D., from Carpe Diem Biomedical Writing and Editing, for professional English editing of the manuscript.

Funding Information

This study was supported by fundings from the P3e and Research (# 249947) Programs from the University of Guadalajara, México, and PFCE-SEP (Programa de Fortalecimiento de la Calidad Educativa- Secretaria de la Educación Pública).

Compliance with Ethical Standards

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed, and all procedures performed in studies involving animals were conducted in accordance with the ethical standards of the University of Guadalajara.

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yamagishi H, Kuroda H, Imai Y, Hiraishi H (2016) Molecular pathogenesis of sporadic colorectal cancers. Chin J Cancer 35:4.  https://doi.org/10.1186/s40880-015-0066-y CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68(1):7–30.  https://doi.org/10.3322/caac.21442 CrossRefGoogle Scholar
  3. 3.
    Terzić J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138(6):2101–2114.e5.  https://doi.org/10.1053/j.gastro.2010.01.058 CrossRefPubMedGoogle Scholar
  4. 4.
    Liang T, Wang H, Zheng Y, Cao Y, Wu X, Zhou X, Dong S (2017) APC hypermethylation for early diagnosis of colorectal cancer: a meta-analysis and literature review. Oncotarget 8(28):46468–46479.  https://doi.org/10.18632/oncotarget.17576 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Le Marchand L (2009)Genome-wide association studies and colorectal cancer. Surg Oncol Clin N Am 18(4):663–668.  https://doi.org/10.1016/j.soc.2009.07.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Raman M, Ambalam P, Kondepudi KK, Pithva S, Kothari C, Patel AT, Purama RK, Dave JM, Vyas BRM (2013) Potential of probiotics, prebiotics and synbiotics for management of colorectal cancer. Gut Microbes 4(3):181–192.  https://doi.org/10.4161/gmic.23919 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shida K, Nomoto K (2013) Probiotics as efficient immunopotentiators: translational role in cancer prevention. Indian J Med Res 138(5):808–814PubMedPubMedCentralGoogle Scholar
  8. 8.
    Compare D, Nardone G (2014) The bacteria-hypothesis of colorectal cancer: pathogenetic and therapeutic implications. Transl Gastrointest Cancer 3(1):44–53.  https://doi.org/10.3978/j.issn.2224-4778.2013.05.37 CrossRefGoogle Scholar
  9. 9.
    Hold GL (2016) Gastrointestinal microbiota and colon cancer. Dig Dis 34(3):244–250.  https://doi.org/10.1159/000443358 CrossRefPubMedGoogle Scholar
  10. 10.
    Dos Reis SA, da Conceição LL, Siqueira NP, Rosa DD, da Silva LL, Peluzio MD (2017) Review of the mechanisms of probiotic actions in the prevention of colorectal cancer. Nutr Res 37:1–19.  https://doi.org/10.1016/j.nutres.2016.11.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Han S, Gao J, Zhou Q, Liu S, Wen C, Yang X (2018) Role of intestinal flora in colorectal cancer from the metabolite perspective: a systematic review. Cancer Manag Res 10:199–206.  https://doi.org/10.2147/CMAR.S153482 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sun J, Kato I (2016) Gut microbiota, inflammation and colorectal cancer. Genes Dis 3(2):130–143.  https://doi.org/10.1016/j.gendis.2016.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mager LF, Wasmer MH, Rau TT, Krebs P (2016)Cytokine-induced modulation of colorectal cancer. Front Oncol 6:96.  https://doi.org/10.3389/fonc.2016.00096 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Krzystek-Korpacka M, Diakowska D, Kapturkiewicz B, Bębenek M, Gamian A (2013) Profiles of circulating inflammatory cytokines in colorectal cancer (CRC), high cancer risk conditions, and health are distinct. Possible implications for CRC screening and surveillance. Cancer Lett 337(1):107–114.  https://doi.org/10.1016/j.canlet.2013.05.033 CrossRefPubMedGoogle Scholar
  15. 15.
    Klampfer L (2011) Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets 11(4):451–464CrossRefGoogle Scholar
  16. 16.
    Kim YW, Kim SK, Kim CS, Kim IY, Cho MY, Kim NK (2014) Association of serum and intratumoral cytokine profiles with tumor stage and neutrophil lymphocyte ratio in colorectal cancer. Anticancer Res 34(7):3481–3487PubMedGoogle Scholar
  17. 17.
    Bednarz-Misa I, Diakowska D, Krzystek-Korpacka M (2019) Local and systemic IL-7 concentration in gastrointestinal-tract cancers. Medicina (Kaunas) 55(6):262.  https://doi.org/10.3390/medicina55060262 CrossRefGoogle Scholar
  18. 18.
    Farkona S, Diamandis EP, Blasutig IM (2016) Cancer immunotherapy: the beginning of the end of cancer? BMC Med 14:73.  https://doi.org/10.1186/s12916-016-0623-5 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chong ES (2014) A potential role of probiotics in colorectal cancer prevention: review of possible mechanisms of action. World J Microbiol Biotechnol 30(2):351–374.  https://doi.org/10.1007/s11274-013-1499-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Andrade ME, Araújo RS, de Barros PA, Soares AD, Abrantes FA Generoso S de V(2015) The role of immunomodulators on intestinal barrier homeostasis in experimental models. Clin Nutr 34(6):1080–1087. Fernandes SO, Cardoso VN.  https://doi.org/10.1016/j.clnu.2015.01.012 CrossRefGoogle Scholar
  21. 21.
    Irecta-Nájera CA, Del Rosario H-LM, Casas-Solís J, Castro-Félix P, Santerre A (2017) Protective effect of Lactobacillus casei on DMH-induced colon carcinogenesis in mice. Probiotics Antimicrob Proteins 9(2):163–171.  https://doi.org/10.1007/s12602-017-9253-2 CrossRefPubMedGoogle Scholar
  22. 22.
    Pant N, Marcotte H, Brüssow H, Svensson L, Hammarström L (2007) Effective prophylaxis against rotavirus diarrhea using a combination of Lactobacillus rhamnosus GG and antibodies. BMC Microbiol 7(1):86.  https://doi.org/10.1186/1471-2180-7-86 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Castañeda Guillot C (2018) Probióticos, puesta al día: an update. Rev Cubana Pediatr. Rev Cubana Pediatr 90(2):286–298Google Scholar
  24. 24.
    Sidira M, Galanis A, Nikolaou A, Kanellaki M, Kourkoutas Y (2014) Evaluation of Lactobacillus casei ATCC 393 protective effect against spoilage of probiotic dry-fermented sausages. Food Control 42:315–320.  https://doi.org/10.1016/j.foodcont.2014.02.024 CrossRefGoogle Scholar
  25. 25.
    NOM-062-ZOO-1999, Secretaria de Agricultura Ganadería, Desarrollo Rural, Pesca y Alimentación: Norma oficial mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio, Edited by Diario Oficial de la Federación 2001Google Scholar
  26. 26.
    Rosenberg DW, Giardina C, Tanaka T (2009) Mouse models for the study of colon carcinogenesis. Carcinogenesis 30(2):183–196.  https://doi.org/10.1093/carcin/bgn267 CrossRefPubMedGoogle Scholar
  27. 27.
    Kiernan JA (2008) Histological and histochemical methods: theory and practice. Scion Publishing, UKGoogle Scholar
  28. 28.
    Lamoreaux L, Roederer M, Koup R (2006) Intracellular cytokine optimization and standard operating procedure. Nat Protoc 1(3):1507–1516.  https://doi.org/10.1038/nprot.2006.268 CrossRefPubMedGoogle Scholar
  29. 29.
    Di Gennaro P, Gerlini G, Urso C, Sestini S, Brandani P, Pimpinelli N, Borgognoni L (2016) CD4+FOXP3+ T regulatory cells decrease and CD3+CD8+ T cells recruitment in TILs from melanoma metastases after electrochemotherapy. Clin Exp Metastasis 33(8):787–798.  https://doi.org/10.1007/s10585-016-9814-x CrossRefPubMedGoogle Scholar
  30. 30.
    Tiptiri-Kourpeti A, Spyridopoulou K, Santarmaki V, Aindelis G, Tompoulidou E, Lamprianidou EE, Saxami G, Ypsilantis P, Lampri ES, Simopoulos C, Kotsianidis I, Galanis A, Kourkoutas Y, Dimitrellou D, Chlichlia K (2016)Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells. PLoS One 11(2):e0147960.  https://doi.org/10.1371/journal.pone.0147960 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lenoir M, Del Carmen S, Cortes-Perez NG, Lozano-Ojalvo D, Muñoz-Provencio D, Chain F, Langella P, de Moreno de LeBlanc A, LeBlanc JG, Bermúdez-Humarán LG (2016)Lactobacillus casei BL23 regulates Treg and Th17 T-cell populations and reduces DMH-associated colorectal cancer. J Gastroenterol 51(9):862–873.  https://doi.org/10.1007/s00535-015-1158-9 CrossRefPubMedGoogle Scholar
  32. 32.
    Zhu Y, Luo TM, Jobin C, Young HA (2011) Gut microbiota and probiotics in colon tumorigenesis. Cancer Lett 309(2):119–127.  https://doi.org/10.1016/j.canlet.2011.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hijová E, Szabadosova V, Štofilová J, Hrčková G (2013) Chemopreventive and metabolic effects of inulin on colon cancer development. J Vet Sci 14(4):387–393.  https://doi.org/10.4142/jvs.2013.14.4.387 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gounaris E, Erdman SE, Restaino C, Gurish MF, Friend DS, Gounari F, Lee DM, Zhang G, Glickman JN, Shin K, Rao VP, Poutahidis T, Weissleder R, McNagny KM, Khazaie K (2007) Mast cells are an essential hematopoietic component for polyp development. Proc Natl Acad Sci USA 11:104(50):19977–19982.  https://doi.org/10.1073/pnas.0704620104 CrossRefGoogle Scholar
  35. 35.
    Gamallat Y, Meyiah A, Kuugbee ED, Hago AM, Chiwala G, Awadasseid A, Bamba D, Zhang X, Shang X, Luo F, Xin Y (2016)Lactobacillus rhamnosus induced epithelial cell apoptosis, ameliorates inflammation and prevents colon cancer development in an animal model. Biomed Pharmacother 83:536–541.  https://doi.org/10.1016/j.biopha.2016.07.001 CrossRefPubMedGoogle Scholar
  36. 36.
    Waldner MJ, Neurath MF (2014) Master regulator of intestinal disease: IL-6 in chronic inflammation and cancer development. Semin Immunol 26(1):75–79.  https://doi.org/10.1016/j.smim.2013.12.003 CrossRefPubMedGoogle Scholar
  37. 37.
    Del Carmen S, de Moreno de LeBlanc A, Levit R, Azevedo V, Langella P, Bermúdez-Humarán LG, LeBlanc JC (2017)Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. Int Immunopharmacol 42:122–129.  https://doi.org/10.1016/j.intimp.2016.11.017 CrossRefPubMedGoogle Scholar
  38. 38.
    Ju H, Xing W, Yang J, Zheng Y, Jia X, Zhang B, Ren H (2016) An effective cytokine adjuvant vaccine induces autologous T-cell response against colon cancer in an animal model. BMC Immunol 17(1):31.  https://doi.org/10.1186/s12865-016-0172-x CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dasari S, Kathera C, Janardhan A, Praveen Kumar A, Viswanath B (2017) Surfacing role of probiotics in cancer prophylaxis and therapy: a systematic review. Clin Nutr 36(6):1465–1472.  https://doi.org/10.1016/j.clnu.2016.11.017 CrossRefPubMedGoogle Scholar
  40. 40.
    Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, Gorter A (2015) Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. OncoImmunology 4(1):e984539.  https://doi.org/10.4161/2162402X.2014.984539 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wakita D, Sumida K, Iwakura Y, Nishikawa H, Ohkuri T, Chamoto K, Kitamura H, Nishimura T (2010)Tumor-infiltratingIL-7-producing γδ T cells support the progression of tumor by promoting angiogenesis. Eur J Immunol 40(7):1927–1937.  https://doi.org/10.1002/eji.200940157 CrossRefGoogle Scholar
  42. 42.
    Liu J, Duan Y, Cheng X, Chen X, Xie W, Long H, Lin Z, Zhu B (2011)IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun 407(2):348–354.  https://doi.org/10.1016/j.bbrc.2011.03.021 CrossRefPubMedGoogle Scholar
  43. 43.
    Brasseit J, Althaus-Steiner E, Faderl M, Dickgreber N, Saurer L, Genitsch V, Dolowschiak T, Li H, Finke D, Hardt WD, McCoy KD, Macpherson AJ, Corazza N, Noti M, Mueller C (2016) CD4 Tcells are required for both development and maintenance of disease in a new mouse model of reversible colitis. Mucosal Immunol 9(3):689–701.  https://doi.org/10.1038/mi.2015.93 CrossRefPubMedGoogle Scholar
  44. 44.
    Wasilewska E, Zlotkowska D (2015)Bifidobacterium longum strain change CD4 and CD8 T cells profile in inflammatory bowel disease induced in mice (MPF6P. 663). J Immunol 194(S1):202.21Google Scholar
  45. 45.
    Shibutani M, Maeda K, Nagahara H, Fukuoka T, Nakao S, Matsutani S, Hirakawa K, Ohira M (2017) The prognostic significance of the tumor-infiltrating programmed cell Death-1+ to CD8+ lymphocyte ratio in patients with colorectal cancer. Anticancer Res 37(8):4165–4172.  https://doi.org/10.21873/anticanres.11804 CrossRefPubMedGoogle Scholar
  46. 46.
    Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, West AN, Carmona M, Kivork C, Seja E, Cherry G, Gutierrez AJ, Grogan TR, Mateus C, Tomasic G, Glaspy JA, Emerson RO, Robins H, Pierce RH, Elashoff DA, Robert C, Ribas A (2014)PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571.  https://doi.org/10.1038/nature13954 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Kang CW, Dutta A, Chang LY, Mahalingam J, Lin YC, Chiang JM, Hsu CY, Huang CT, Su WT, Chu YY, Lin CY (2015) Apoptosis of tumor infiltrating effector TIM-3+CD8+ T cells in colon cancer. Sci Rep 5:15659.  https://doi.org/10.1038/srep15659 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Perdigón G, de Moreno de LeBlanc A, Valdez J, Rachid M (2002) Role of yoghurt in the prevention of colon cancer. Eur J Clin Nutr 56(S3):S65–S68.  https://doi.org/10.1038/sj.ejcn.1601490 CrossRefPubMedGoogle Scholar
  49. 49.
    Lan B, Zhang J, Lu D, Li W (2016) Generation of cancer-specific CD8(+) CD69(+) cells inhibits colon cancer growth. Immunobiology 221(1):1–5.  https://doi.org/10.1016/j.imbio.2015.08.010 CrossRefPubMedGoogle Scholar
  50. 50.
    Sun JC, Lanier LL (2011) NK cell development, homeostasis and function: parallels with CD8+ T cells. Nat Rev Immunol 11(10):645–657.  https://doi.org/10.1038/nri3044 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tallerico R, Todaro M, Di Franco S, Maccalli C, Garofalo C, Sottile R, Palmieri C, Tirinato L, Pangigadde PN, La Rocca R, Mandelboim O, Stassi G, Di Fabrizio E, Parmiani G, Moretta A, Dieli F, Kärre K, Carbone E (2013) Human NK cells selective targeting of colon cancer-initiating cells: a role for natural cytotoxicity receptors and MHC class I molecules. J Immunol 190(5):2381–2390.  https://doi.org/10.4049/jimmunol.1201542 CrossRefPubMedGoogle Scholar
  52. 52.
    Gunawardene A, Dennett E, Larsen P (2019) Prognostic value of multiple cytokine analysis in colorectal cancer: a systematic review. J Gastrointest Oncol 10(1):134–143.  https://doi.org/10.21037/jgo.2018.07.11 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Shimaoka H, Takeno S, Maki K, Sasaki T, Hasegawa S, Yamashita Y (2017) A cytokine signal inhibitor for rheumatoid arthritis enhances cancer metastasis via depletion of NK cells in an experimental lung metastasis mouse model of colon cancer. Oncol Lett 14(3):3019–3027.  https://doi.org/10.3892/ol.2017.6473 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kryczek I, Wei S, Szeliga W, Vatan L, Zou W (2009) Endogenous IL-17 contributes to reduced tumor growth and metastasis. Blood 114:357–359.  https://doi.org/10.1182/blood-2008-09-177360 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S (2016) Two FOXP3+CD4+ T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679–684.  https://doi.org/10.1038/nm.4086 CrossRefPubMedGoogle Scholar
  56. 56.
    Olguín JE, Medina-Andrade I, Molina E, Vázquez A, Pacheco-Fernández T, Saavedra R, Pérez-Plasencia C, Chirino YI, Vaca-Paniagua F, Arias-Romero LE, Gutierrez-Cirlos EB, León-Cabrera SA, Rodriguez-Sosa M, Terrazas LI (2018) Early and partial reduction in CD4+Foxp3+ regulatory T cells during colitis-associated colon cancer induces CD4+ and CD8+ T Cell activation inhibiting tumorigenesis. J Cancer 9(2):239–249.  https://doi.org/10.7150/jca.21336 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chaudhary B, Elkord E (2016) Regulatory T cells in the tumor microenvironment and cancer progression: role and therapeutic targeting. Vaccines (Basel) 4(3):28.  https://doi.org/10.3390/vaccines4030028 CrossRefGoogle Scholar
  58. 58.
    Zhang X, Kelaria S, Kerstetter J, Wang J (2015) The functional and prognostic implications of regulatory T cells in colorectal carcinoma. J Gastrointest oncol 6(3):307–313.  https://doi.org/10.3978/j.issn.2078-6891.2015.017 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y AgropecuariasUniversidad de GuadalajaraZapopanMéxico
  2. 2.Departamento de SaludEl Colegio de La Frontera SurVillahermosaMéxico
  3. 3.Departamento de Ciencias Básicas para la Salud, CIBIMEC, Centro Universitario del SurUniversidad de GuadalajaraGuadalajaraMéxico

Personalised recommendations