Advertisement

Effect of the Antimicrobial Peptide LL-37 on Gene Expression of Chemokines and 29 Toll-like Receptor-Associated Proteins in Human Gingival Fibroblasts Under Stimulation with Porphyromonas gingivalis Lipopolysaccharide

  • Megumi InomataEmail author
  • Toshi Horie
  • Takeshi IntoEmail author
Article
  • 36 Downloads

Abstract

The antimicrobial peptide LL-37 neutralizes the biological activity of lipopolysaccharide (LPS), while it upregulates the expression of several immune-related genes. We investigated the effect of LL-37 on gene regulation of human gingival fibroblasts (HGFs), stimulated with or without Porphyromonas gingivalis-derived LPS, a ligand for Toll-like receptor (TLR). LL-37 was non-toxic to HGFs up to a concentration of 10 μg/ml. P. gingivalis LPS upregulated the expression of IL8, CXCL10, and CCL2, whereas LL-37 reduced this upregulation. In absence of LPS, LL-37 itself upregulated the expression of IL8 and CCL2. LL-37 increased the expression of P2X7, which was constitutively expressed in HGFs. The P2X7 antagonist A-438079 suppressed the cytotoxicity and upregulatory effect of LL-37 on chemokine response, but not its downregulatory effect on P. gingivalis LPS–induced chemokine response. Whether LL-37 alters the expression of 29 genes that encode TLR-associated proteins, including TLRs, co-receptors, signaling molecules, and negative regulators, in HGFs, under stimulation with LPS, was examined. Among TLRs, P. gingivalis LPS upregulated the level of TLR4, whereas LL-37 reduced it. In co-receptors, LL-37 downregulated the level of CD14. Among signaling molecules, LL-37 augmented the LPS-upregulated expression of IRAK1. Similar effects were observed in the specific negative regulators TNFAIP3, RNF216, TOLLIP, and SIGIRR. Our results suggest that LL-37 exerts cytotoxicity and upregulation of chemokine response via the P2X7 receptor, while it induces downregulation of P. gingivalis LPS–induced chemokine response through alteration in the expression of 7 specific TLR-associated genes: downregulation of TLR4 and CD14 and upregulation of IRAK1, TNFAIP3, RNF216, TOLLIP, and SIGIRR.

Key words

LL-37 Human gingival fibroblasts Toll-like receptor Porphyromonas gingivalis lipopolysaccharide 

Notes

Acknowledgments

The manuscript was reviewed by Editage (www.editage.jp) for English language editing.

Funding Information

This work was supported by Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) to M.I. (18K09544) and T.I. (18 K09561). Funding sources had no role in the study design, data collection and analysis, decision to publish, and preparation of the manuscript.

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Greer A, Zenobia C, Darveau RP (2013) Defensins and LL-37: a review of function in the gingival epithelium. Periodontol 2000 63(1):67–79.  https://doi.org/10.1111/prd.12028 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Durr UH, Sudheendra US, Ramamoorthy A (2006) LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim Biophys Acta 1758(9):1408–1425.  https://doi.org/10.1016/j.bbamem.2006.03.030 CrossRefPubMedGoogle Scholar
  3. 3.
    Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7(2):179–196PubMedGoogle Scholar
  4. 4.
    Dale BA, Kimball JR, Krisanaprakornkit S, Roberts F, Robinovitch M, O’Neal R, Valore EV, Ganz T, Anderson GM, Weinberg A (2001) Localized antimicrobial peptide expression in human gingiva. J Periodontal Res 36(5):285–294CrossRefGoogle Scholar
  5. 5.
    Murakami M, Ohtake T, Dorschner RA, Gallo RL (2002) Cathelicidin antimicrobial peptides are expressed in salivary glands and saliva. J Dent Res 81(12):845–850.  https://doi.org/10.1177/154405910208101210 CrossRefPubMedGoogle Scholar
  6. 6.
    Puklo M, Guentsch A, Hiemstra PS, Eick S, Potempa J (2008) Analysis of neutrophil-derived antimicrobial peptides in gingival crevicular fluid suggests importance of cathelicidin LL-37 in the innate immune response against periodontogenic bacteria. Oral Microbiol Immunol 23(4):328–335.  https://doi.org/10.1111/j.1399-302X.2008.00433.x CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bucki R, Leszczynska K, Namiot A, Sokolowski W (2010) Cathelicidin LL-37: a multitask antimicrobial peptide. Arch Immunol Ther Exp (Warsz) 58(1):15–25.  https://doi.org/10.1007/s00005-009-0057-2 CrossRefGoogle Scholar
  8. 8.
    Gorr SU, Abdolhosseini M (2011) Antimicrobial peptides and periodontal disease. J Clin Periodontol 38(Suppl 11):126–141.  https://doi.org/10.1111/j.1600-051X.2010.01664.x CrossRefPubMedGoogle Scholar
  9. 9.
    Turkoglu O, Emingil G, Kutukculer N, Atilla G (2009) Gingival crevicular fluid levels of cathelicidin LL-37 and interleukin-18 in patients with chronic periodontitis. J Periodontol 80(6):969–976.  https://doi.org/10.1902/jop.2009.080532 CrossRefPubMedGoogle Scholar
  10. 10.
    Putsep K, Carlsson G, Boman HG, Andersson M (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360(9340):1144–1149.  https://doi.org/10.1016/S0140-6736(02)11201-3 CrossRefPubMedGoogle Scholar
  11. 11.
    Golec M (2007) Cathelicidin LL-37: LPS-neutralizing, pleiotropic peptide. Ann Agric Environ Med 14(1):1–4PubMedGoogle Scholar
  12. 12.
    Nagaoka I, Hirota S, Niyonsaba F, Hirata M, Adachi Y, Tamura H, Tanaka S, Heumann D (2002) Augmentation of the lipopolysaccharide-neutralizing activities of human cathelicidin CAP18/LL-37-derived antimicrobial peptides by replacement with hydrophobic and cationic amino acid residues. Clin Diagn Lab Immunol 9(5):972–982PubMedPubMedCentralGoogle Scholar
  13. 13.
    Scott MG, Davidson DJ, Gold MR, Bowdish D, Hancock RE (2002) The human antimicrobial peptide LL-37 is a multifunctional modulator of innate immune responses. J Immunol 169(7):3883–3891CrossRefGoogle Scholar
  14. 14.
    Suphasiriroj W, Mikami M, Shimomura H, Sato S (2013) Specificity of antimicrobial peptide LL-37 to neutralize periodontopathogenic lipopolysaccharide activity in human oral fibroblasts. J Periodontol 84(2):256–264.  https://doi.org/10.1902/jop.2012.11065210.1902/jop.2012.120453 CrossRefPubMedGoogle Scholar
  15. 15.
    Inomata M, Into T, Murakami Y (2010) Suppressive effect of the antimicrobial peptide LL-37 on expression of IL-6, IL-8 and CXCL10 induced by Porphyromonas gingivalis cells and extracts in human gingival fibroblasts. Eur J Oral Sci 118(6):574–581.  https://doi.org/10.1111/j.1600-0722.2010.00775.x CrossRefPubMedGoogle Scholar
  16. 16.
    Rosenfeld Y, Papo N, Shai Y (2006) Endotoxin (lipopolysaccharide) neutralization by innate immunity host-defense peptides. Peptide properties and plausible modes of action. J Biol Chem 281(3):1636–1643.  https://doi.org/10.1074/jbc.M504327200 CrossRefPubMedGoogle Scholar
  17. 17.
    Suzuki K, Murakami T, Hu Z, Tamura H, Kuwahara-Arai K, Iba T, Nagaoka I (2016) Human host defense cathelicidin peptide LL-37 enhances the lipopolysaccharide uptake by liver sinusoidal endothelial cells without cell activation. J Immunol 196(3):1338–1347.  https://doi.org/10.4049/jimmunol.1403203 CrossRefPubMedGoogle Scholar
  18. 18.
    Montreekachon P, Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Krisanaprakornkit S (2011) Involvement of P2X(7) purinergic receptor and MEK1/2 in interleukin-8 up-regulation by LL-37 in human gingival fibroblasts. J Periodontal Res 46(3):327–337.  https://doi.org/10.1111/j.1600-0765.2011.01346.x CrossRefPubMedGoogle Scholar
  19. 19.
    Tjabringa GS, Aarbiou J, Ninaber DK, Drijfhout JW, Sorensen OE, Borregaard N, Rabe KF, Hiemstra PS (2003) The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J Immunol 171(12):6690–6696.  https://doi.org/10.4049/jimmunol.171.12.6690 CrossRefPubMedGoogle Scholar
  20. 20.
    Zuyderduyn S, Ninaber DK, Hiemstra PS, Rabe KF (2006) The antimicrobial peptide LL-37 enhances IL-8 release by human airway smooth muscle cells. J Allergy Clin Immunol 117(6):1328–1335.  https://doi.org/10.1016/j.jaci.2006.03.022 CrossRefPubMedGoogle Scholar
  21. 21.
    Braff MH, Hawkins MA, Di Nardo A, Lopez-Garcia B, Howell MD, Wong C, Lin K, Streib JE, Dorschner R, Leung DY, Gallo RL (2005) Structure-function relationships among human cathelicidin peptides: dissociation of antimicrobial properties from host immunostimulatory activities. J Immunol 174(7):4271–4278.  https://doi.org/10.4049/jimmunol.174.7.4271 CrossRefPubMedGoogle Scholar
  22. 22.
    Chotjumlong P, Bolscher JG, Nazmi K, Reutrakul V, Supanchart C, Buranaphatthana W, Krisanaprakornkit S (2013) Involvement of the P2X7 purinergic receptor and c-Jun N-terminal and extracellular signal-regulated kinases in cyclooxygenase-2 and prostaglandin E2 induction by LL-37. J Innate Immun 5(1):72–83.  https://doi.org/10.1159/000342928 CrossRefPubMedGoogle Scholar
  23. 23.
    Miyake K (2006) Roles for accessory molecules in microbial recognition by Toll-like receptors. J Endotoxin Res 12(4):195–204.  https://doi.org/10.1179/096805106X118807 CrossRefPubMedGoogle Scholar
  24. 24.
    O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364.  https://doi.org/10.1038/nri2079 CrossRefPubMedGoogle Scholar
  25. 25.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801.  https://doi.org/10.1016/j.cell.2006.02.015 CrossRefPubMedGoogle Scholar
  26. 26.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384.  https://doi.org/10.1038/ni.1863 CrossRefGoogle Scholar
  27. 27.
    Liew FY, Xu D, Brint EK, O'Neill LA (2005) Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol 5(6):446–458.  https://doi.org/10.1038/nri1630 CrossRefPubMedGoogle Scholar
  28. 28.
    Into T, Inomata M, Takayama E, Takigawa T (2012) Autophagy in regulation of Toll-like receptor signaling. Cell Signal 24(6):1150–1162.  https://doi.org/10.1016/j.cellsig.2012.01.020 CrossRefPubMedGoogle Scholar
  29. 29.
    Asai Y, Hashimoto M, Fletcher HM, Miyake K, Akira S, Ogawa T (2005) Lipopolysaccharide preparation extracted from Porphyromonas gingivalis lipoprotein-deficient mutant shows a marked decrease in toll-like receptor 2-mediated signaling. Infect Immun 73(4):2157–2163.  https://doi.org/10.1128/IAI.73.4.2157-2163.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Walters SM, Dubey VS, Jeffrey NR, Dixon DR (2010) Antibiotic-induced Porphyromonas gingivalis LPS release and inhibition of LPS-stimulated cytokines by antimicrobial peptides. Peptides 31(9):1649–1653.  https://doi.org/10.1016/j.peptides.2010.06.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Nagaoka I, Tamura H, Hirata M (2006) An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7. J Immunol 176(5):3044–3052CrossRefGoogle Scholar
  32. 32.
    Tomasinsig L, Pizzirani C, Skerlavaj B, Pellegatti P, Gulinelli S, Tossi A, Di Virgilio F, Zanetti M (2008) The human cathelicidin LL-37 modulates the activities of the P2X7 receptor in a structure-dependent manner. J Biol Chem 283(45):30471–30481.  https://doi.org/10.1074/jbc.M802185200 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Wang PL, Ohura K (2002) Porphyromonas gingivalis lipopolysaccharide signaling in gingival fibroblasts-CD14 and Toll-like receptors. Crit Rev Oral Biol Med 13(2):132–142CrossRefGoogle Scholar
  34. 34.
    Kawagoe T, Sato S, Matsushita K, Kato H, Matsui K, Kumagai Y, Saitoh T, Kawai T, Takeuchi O, Akira S (2008) Sequential control of Toll-like receptor-dependent responses by IRAK1 and IRAK2. Nat Immunol 9(6):684–691.  https://doi.org/10.1038/ni.1606 CrossRefPubMedGoogle Scholar
  35. 35.
    Albrecht V, Hofer TP, Foxwell B, Frankenberger M, Ziegler-Heitbrock L (2008) Tolerance induced via TLR2 and TLR4 in human dendritic cells: role of IRAK-1. BMC Immunol 9:69.  https://doi.org/10.1186/1471-2172-9-69 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lowe EL, Doherty TM, Karahashi H, Arditi M (2006) Ubiquitination and de-ubiquitination: role in regulation of signaling by Toll-like receptors. J Endotoxin Res 12(6):337–345.  https://doi.org/10.1179/096805106X118915 CrossRefPubMedGoogle Scholar
  37. 37.
    Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, McNally E, Pickart C, Ma A (2004) The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5(10):1052–1060.  https://doi.org/10.1038/ni1110 CrossRefPubMedGoogle Scholar
  38. 38.
    Chuang TH, Ulevitch RJ (2004) Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5(5):495–502.  https://doi.org/10.1038/ni1066 CrossRefPubMedGoogle Scholar
  39. 39.
    Burns K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol 2(6):346–351.  https://doi.org/10.1038/35014038 CrossRefPubMedGoogle Scholar
  40. 40.
    Wald D, Qin J, Zhao Z, Qian Y, Naramura M, Tian L, Towne J, Sims JE, Stark GR, Li X (2003) SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 4(9):920–927.  https://doi.org/10.1038/ni968 CrossRefPubMedGoogle Scholar
  41. 41.
    Ahmed N, Zeng M, Sinha I, Polin L, Wei WZ, Rathinam C, Flavell R, Massoumi R, Venuprasad K (2011) The E3 ligase Itch and deubiquitinase Cyld act together to regulate Tak1 and inflammation. Nat Immunol 12(12):1176–1183.  https://doi.org/10.1038/ni.2157 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kobayashi K, Hernandez LD, Galan JE, Janeway CA Jr, Medzhitov R, Flavell RA (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110(2):191–202CrossRefGoogle Scholar
  43. 43.
    Andrukhov O, Ertlschweiger S, Moritz A, Bantleon HP, Rausch-Fan X (2014) Different effects of P. gingivalis LPS and E. coli LPS on the expression of interleukin-6 in human gingival fibroblasts. Acta Odontol Scand 72(5):337–345.  https://doi.org/10.3109/00016357.2013.834535 CrossRefPubMedGoogle Scholar
  44. 44.
    Wara-aswapati N, Chayasadom A, Surarit R, Pitiphat W, Boch JA, Nagasawa T, Ishikawa I, Izumi Y (2013) Induction of toll-like receptor expression by Porphyromonas gingivalis. J Periodontol 84(7):1010–1018.  https://doi.org/10.1902/jop.2012.120362 CrossRefPubMedGoogle Scholar
  45. 45.
    Lappin MJ, Brown V, Zaric SS, Lundy FT, Coulter WA, Irwin CR (2016) Interferon-gamma stimulates CD14, TLR2 and TLR4 mRNA expression in gingival fibroblasts increasing responsiveness to bacterial challenge. Arch Oral Biol 61:36–43.  https://doi.org/10.1016/j.archoralbio.2015.10.005 CrossRefPubMedGoogle Scholar
  46. 46.
    Herath TD, Darveau RP, Seneviratne CJ, Wang CY, Wang Y, Jin L (2013) Tetra- and penta-acylated lipid A structures of Porphyromonas gingivalis LPS differentially activate TLR4-mediated NF-kappaB signal transduction cascade and immuno-inflammatory response in human gingival fibroblasts. PLoS One 8(3):e58496.  https://doi.org/10.1371/journal.pone.0058496 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Oral Microbiology, Division of Oral Infections and Health SciencesAsahi University School of DentistryMizuhoJapan

Personalised recommendations