Advertisement

Probiotics and Psychobiotics: the Role of Microbial Neurochemicals

  • Alexander V. OleskinEmail author
  • Boris A. Shenderov
Article

Abstract

In light of recent data, microorganisms should be construed as organisms that are capable of communication and collective behaviors. Microbial communication signals are involved both in interactions among microbial cells within microbial social systems, including the human body-inhabiting microconsortium, and the dialog between the microbiota and the host organism. The microbiota inhabits various niches of the host organism, especially the gastrointestinal (GI) tract. Microorganisms release diverse signal molecules and, in addition, specifically respond to host signals. This enables them to constantly interact with the nervous system including the brain and the immune system of the host organism. Evolutionarily conserved signals that are involved in the communication between microbiota and the host include neuroactive substances (neurochemicals) such as peptides, amino acids, biogenic amines, short-chain fatty acids, and gaseous substances. This ongoing dialog may either stabilize the host’s physical and mental health state or, alternatively, cause serious health problems. Attempts are made to correct imbalances in the brain-gut-microbiota axis with probiotics including their subgroup called psychobiotics that release neuroactive substances directly influencing the human brain, psyche, and behavior. A number of recent review works address the microbiota–host system and its communication signals. Some of the publications focus on the involvement of neurochemicals in the bidirectional communication within the host–microbiota system. However, this work concentrates on the impact of bacterial cell components, metabolites, and signal molecules as promising alternatives to the currently widespread probiotics that have both advantages and disadvantages. Such biologically active agents of microbial origin are referred to as postbiotics or, alternatively, metabiotics (the term preferred in this work).

Keywords

Biofilms Probiotics Psychobiotics Metabiotics Neurochemicals Nervous system Immune system Biogenic amines Neuroactive amino acids Short-chain fatty acids 

Notes

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Oleskin AV, Shenderov BA, Rogovsky VS (2017) Role of neurochemicals in the interaction between the microbiota and the immune and the nervous system of the host organism. Probiotics Antimicro 9(3):215–234.  https://doi.org/10.1007/s12602-017-9262-1 CrossRefGoogle Scholar
  2. 2.
    Oleskin AV, El’-Registan GI, Shenderov BA (2016) Role of neuromediators in the functioning of the human microbiota: “business talks” among microorganisms and the microbiota-host dialogue. Microbiology+ 85(1):1–22.  https://doi.org/10.1134/S0026261716010082 Google Scholar
  3. 3.
    Oleskin AV, Shenderov BA (2016) Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health D.  https://doi.org/10.3402/mehd.v27.30971
  4. 4.
    Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JT, Dinan TG (2014) Gut microbiota: the neglected endocrine organ. Mol Endocrinol 28:1221–1238CrossRefGoogle Scholar
  5. 5.
    Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K (2017) Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 57:1–24.  https://doi.org/10.1007/s00394-017-1445-8 CrossRefGoogle Scholar
  6. 6.
    Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474:1823–1836.  https://doi.org/10.1042/BCJ20160510 CrossRefGoogle Scholar
  7. 7.
    van de Wouw M, Schellekens H, Dinan TG, Cryan JF (2017) Microbiota-gut-brain axis: modulator of host metabolism and appetite. J Nutr 147:727–745CrossRefGoogle Scholar
  8. 8.
    Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74:3769–3787CrossRefGoogle Scholar
  9. 9.
    Parashar A, Udayabanu M (2016) Gut microbiota regulates key modulators of social behavior. Eur Neuropsychopharmacol 26:78–91CrossRefGoogle Scholar
  10. 10.
    Herd P, Palloni A, Rey F, Dowd JB (2018) Social and population science approaches to understand the human microbiome. Nat Hum Behav 2:808–815CrossRefGoogle Scholar
  11. 11.
    Rees T, Bosch T, Douglas AE (2018) How the microbiota challenges our concept of self. PLoS Biol 16(2):e2005358CrossRefGoogle Scholar
  12. 12.
    Man WH, de Steenhuijsen Piters WA, Bogaert D (2017) The microbiota of the respiratory tract: gatekeeper to respiratory health. Nat Rev Microbiol 15:259–270CrossRefGoogle Scholar
  13. 13.
    Zierer J, Jackson MA, Kastenmuller G, Mangino M, Long T, Telenti A, Mohney RP, Small KS, Bell JT, Steves CJ, Valdes AM, Spector TD, Menni C (2018) The fecal metabolome as a functional readout of the gut microbiome. Nat Genet 50:790–795.  https://doi.org/10.1038/s415588-018-0135-7 CrossRefGoogle Scholar
  14. 14.
    Cani PD, Van Hul M, Lefort C, DepommierC RM, Everard A (2019) Microbial regulation of organismal energy homeostasis. Nat Metabolism 1:34–46CrossRefGoogle Scholar
  15. 15.
    Liang S, Wu X, Jin F (2018) Gut-brain physiology: rethinking psychology from the microbiota-gut-brain axis. // Frontiers in Integrative Neuroscience 12(Art.33):1–24Google Scholar
  16. 16.
    Dinan TG, Stilling RM, Stanton C, Cryan JF (2015) Collective unconscious: how gut microbes shape human behavior. J Psychiatr Res 63:1–9CrossRefGoogle Scholar
  17. 17.
    Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133CrossRefGoogle Scholar
  18. 18.
    Hood L (2012) Tackling the microbiome. Science 336:1209CrossRefGoogle Scholar
  19. 19.
    Lyte M (2014) Microbial endocrinology and the microbiota–gut–brain axis. In: Lyte M, Cryan JF (ed) microbial endocrinology: the microbiota–gut–brain axis in health and disease. Advances in Experimental Medicine and Biology. 817 Springer, New York, pp 3-24Google Scholar
  20. 20.
    Lyte M (2016) Microbial endocrimology in the pathogenesis of infectious disease. Microbial Spec 4(2):VMBT-0021-2015.  https://doi.org/10.1128/microbiolspec.VMBF-0021-2015
  21. 21.
    Lyte M, Daniels KM, Schmitz-Esser S (2019) Fluoxetine-induced alteration of murine gut microbial community structure: evidence for a microbial endocrinology-based mechanism of action responsible for fluoxetine-induced side effects. Peer J 7:e6199.  https://doi.org/10.7717/peerj.6199 CrossRefGoogle Scholar
  22. 22.
    Shenderov BA (2017) Metabiotics:an overview of progress, opportunities and challenges. J Microb Biochem Technol.  https://doi.org/10.4172/1948-5948-C1-029
  23. 23.
    Shenderov BA, Midtvedt T (2014) Epigenomic programming: a future way to health? Microb Ecol Health D 25:24145.  https://doi.org/10.3402/mehd.v25.24145 Google Scholar
  24. 24.
    Rahn O (1906) Über den Einfluß der Stoffwechselprodukte auf das Wachstum der Bakterien. Zentralblatt für Bakteriologie und Parasitenkunde 16:417–429Google Scholar
  25. 25.
    Penfold WJ (1914) On the nature of the bacterial lag. J Hyg-Camb 14:215–241CrossRefGoogle Scholar
  26. 26.
    Nikolaev YA, Plakunov VK (2007) The biofilm: a “microbial city” or an analog of the multicellular organism? Microbiology+ 76(2):148–163Google Scholar
  27. 27.
    Martin M, Hölscher T, Dragoš A, Cooper VS, Kovács ÁT (2016) Laboratory evolution of microbial interactions in bacterial biofilms. J Bacteriol 198(19):2564–2571.  https://doi.org/10.1128/JB.01018-15 CrossRefGoogle Scholar
  28. 28.
    Sekowska A, Masson JB, Celani A, Danchin A, Vergassola M (2009) Repulsion and metabolic switches in the collective behavior of bacterial colonies. Biophys J 97:688–698CrossRefGoogle Scholar
  29. 29.
    Crespi BJ (2001) The evolution of social behavior in microorganisms. Trends Ecol Evol 16(4):178–183.  https://doi.org/10.1016/S0169-5347(01)02115-2 CrossRefGoogle Scholar
  30. 30.
    West SA, Digope SP, Buckling A, Griffin AS (2007) The social lives of microbes. Anu Rev Ecol Evol Sys 38:53–71.  https://doi.org/10.1146/annurev.ecolsys.38.091206.095740 CrossRefGoogle Scholar
  31. 31.
    Foster KR (2010) Social behaviour in microorganisms. In: Székely T, Moore AJ, Komdeur J (eds) Social behaviour: genes, ecology and evolution. Cambridge University Press, Cambridge, pp 331–356CrossRefGoogle Scholar
  32. 32.
    Tarnita CE (2017) The ecology and evolution of social behavior in microorganisms. J Exp Biol 220:18–24.  https://doi.org/10.1242/jeb145631 CrossRefGoogle Scholar
  33. 33.
    Zhou J, Cai ZH (2018) Microbial social interactions in biofilms. In: Bramhachari PV (ed) Implications of quorum sensing systems in biofilm formation and virulence. Springer Nature, Singapore, pp 29–46.  https://doi.org/10.1007/978-981-13-2429-1_4 CrossRefGoogle Scholar
  34. 34.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland Publ. Inc., New York, LondonGoogle Scholar
  35. 35.
    Shapiro JA (1988) Bacteria as multicellular organisms. Sci Am June 258:82–89CrossRefGoogle Scholar
  36. 36.
    Lederberg J (2000) Infectious history. Science 288:287–293CrossRefGoogle Scholar
  37. 37.
    Kaper JB, Sperandio V (2005) Bacterial cell-to-cell signaling in the gastrointestinal tract. Infect Immun 73:3197–3209CrossRefGoogle Scholar
  38. 38.
    Sharkey KA, Savidge TC (2014) Role of enteric neurotransmitters in host defense and protection of the gastrointestinal tract. Anatomic Neuroscience: Basic & Clinical 182:70–82Google Scholar
  39. 39.
    Boddu RS, Divakar K (2018) Metagenomic insights into environmental microbiome and their application in food/pharmaceutical industry. In: Patra JK, Das G, Shin HS (eds) Microbial biotechnology, Application in food and pharmacology, vol 2. Springer Nature, Singapore, pp 23–38CrossRefGoogle Scholar
  40. 40.
    Vorobyeva LI, Altukhova EA, Naumova ES (1993) Dismutagenic effect of cultural liquid produced during propionic-acid fermentation. Microbiology+ 62(6):1093–1100Google Scholar
  41. 41.
    Vorobyeva LI, Khodzhaev EY, Ponomareva GI (2003) The extracellular protein of Luteococus japonicus subsp. casei reactivates UV radiation- and heat-killed cells. Microbiology+ 72(4):482–487Google Scholar
  42. 42.
    Backhed F, Bugianesi E, Christofk H, Dikic I, Gupta R, Mair WB, O’Neill LAJ, Ralser M, Sabatini DM, Tschop M (2019) The next decade of metabolism. Nat Metabolism 1:2–4CrossRefGoogle Scholar
  43. 43.
    Nikolaev YA (2000) Distant informational interactions in bacteria. Microbiology+ 69(5):597–605Google Scholar
  44. 44.
    Zhao X, Liu X, Xu X, Fu YV (2017) Microbe social skill: the cell-to-cell communication between microorganisms. Sci Bull 62:516–524CrossRefGoogle Scholar
  45. 45.
    Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176(2):269–275CrossRefGoogle Scholar
  46. 46.
    Gray KM (1997) Intercellular communication and group behavior in bacteria. Trends Microbiol 5(5):184–188CrossRefGoogle Scholar
  47. 47.
    Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Bi 21:319–346CrossRefGoogle Scholar
  48. 48.
    Tarighi S, Taheri P (2011) Different aspects of bacterial communication signals. World J Microbiol Biotechnol 27:1267–1280CrossRefGoogle Scholar
  49. 49.
    Bassler BL, Miller MB (2013) Quorum sensing. In: Rosenberg E et al (eds) The prokaryotes – prokaryotic communities and ecophysiology. Springer-Verlag, Berlin & Heidelberg, pp 495–509Google Scholar
  50. 50.
    Hagen SJ (2015) The physical basis of bacterial quorum communication. Springer-Verlag, New York, Heidelberg, Dordrecht, & LondonGoogle Scholar
  51. 51.
    Kalia VC (2015) Quorum sensing vs. quorum quenching: a battle with no end in sight. Springer-Verlag, New YorkGoogle Scholar
  52. 52.
    Leoni L, Rampioni G (2018) Preface. In: Leoni L, Rampioni G (ed) Quorum sensing: methods and protocols. Humana Press, Rome, pp vii–viiiGoogle Scholar
  53. 53.
    Oleskin AV, Shishov VI, Malikina KD (2010) Symbiotic biofilms and brain neurochemistry. Nova Science Publishers, Hauppauge (New York)Google Scholar
  54. 54.
    Gonzalez JF, Venturi V (2013) A novel widespread interkingdom signaling circuit. Trends Plant Sci 18:167–174CrossRefGoogle Scholar
  55. 55.
    Ulvestad E (2009) Cooperation and conflict in host-microbe relations APMIS (Acta Pathol Micro Im B 117:311–322Google Scholar
  56. 56.
    Sarris J, Logan AC, Akbaraly TN, Amminger GP, Balanza-Martinez V, Freeman MP, Hibbeln J, Matsuoka Y, Mischoulon D, Mizoue T, Nanri A, Nishi D, Ramsey D, Rucklidge JJ, Sanchez-Villegas A, Scholey A, Su KP, Jacka FN (2015) International Society for Nutritional Psychiatry Research. Nutritional medicine as mainstream in psychiatry. Lancet Psychiatry 2:271–274CrossRefGoogle Scholar
  57. 57.
    El Aidy S, Dinan TG, Cryan JF (2015) Gut microbiota: the conductor in the orchestra of immune-neuroendocrine communication. Clin Therap 37:954–967CrossRefGoogle Scholar
  58. 58.
    Kerry RG, Pradhan P, Samal D, Gouda S, Das G, Shin HS, Patra JK (2018) Probiotics: the ultimate nutritional supplement. In: Patra JK, Das G, Shin HS (eds) Microbial biotechnology, Application in food and pharmacology, vol 2. Springer Nature Singapore Pte. Ltd, Singapore, pp 141–152CrossRefGoogle Scholar
  59. 59.
    Frati P, Kyriakou C, Del Rio A, Marinelli E, Vergallo GM, Zaami S, Busardò FP (2015) Smart drugs and synthetic androgens for cognitive and physical enhancement: revolving doors of cosmetic neurology. Curr Neuropharmacol 13(1):5–11.  https://doi.org/10.2174/1570159X13666141210221750 CrossRefGoogle Scholar
  60. 60.
    Mazzoli R, Pessione E (2016) The neuro-endocrinological role of microbial glutamate and GABA signaling. Front Microbiol 7:1934CrossRefGoogle Scholar
  61. 61.
    Husarova V, Ostatnikova D (2013) Monosodium glutamate toxic effects and their implications for human intake: a review. JMED Research:608765–608712.  https://doi.org/10.5171/2013.608765
  62. 62.
    Lau A, Tymianski M (2010) Glutamate receptors, neurotoxicity and neurodegeneration. 460(2):525–42.  https://doi.org/10.1007/s00424-010-0809-1
  63. 63.
    Park YW (2009) Bioactive compounds in milk and dairy products. John Wiley& Sons, Hoboken (NJ)CrossRefGoogle Scholar
  64. 64.
    FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Food and Agriculture Organization of the United NationsGoogle Scholar
  65. 65.
    Patel RM, Denning PW (2013) Therapeutic use of prebiotics, probiotics, and postbiotics to prevent necrotizing enterocolitis: what is the current evidence? Clin Perinatol 40(1):11–25.  https://doi.org/10.1016/j.clp.2012.12.002 CrossRefGoogle Scholar
  66. 66.
    Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, Hernández-Mendoza A (2018) Postbiotics: an evolving term within the functional foods field. Trends Food Sci Technol 75:105–114.  https://doi.org/10.1016/j.tifs.2018.03.009 CrossRefGoogle Scholar
  67. 67.
    Martins FS, Nardi RMD, Arantes RME, Rosa CA, Neves MJ, Nicoli JR (2005) Scanning of yeasts as probiotics based on capacities to colonize the gastrointestinal tract and to protect against enteropathogenic challenge in mice. J Gen Appl Microbiol 51:83–92CrossRefGoogle Scholar
  68. 68.
    Tejero-Sariñena S, Barlow J, Costabile A, Gibson GR, Rowland I (2013) Antipathogenic activity of probiotics against Salmonella Typhimurium and Clostridium difficile in anaerobic batch culture systems: is it due to synergies in probiotic mixtures or the specificity of single strains? Anaerobe 24:60–65CrossRefGoogle Scholar
  69. 69.
    Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Khosroushahi AY (2014) Probiotic potential and biotherapeutic effects of newly isolated vaginal Lactobacillus acidophilus 36YL strain on cancer cells. Anaerobe 28:29–36CrossRefGoogle Scholar
  70. 70.
    Mishra M, Vishwakarma K, Singh J, Jain S, Kumar V, Kumar Tripathi D, Sharma S (2018) Exploring the multifaceted role of microbes in pharmacology. In: Patra JK, Das G, Shin HS (eds) Microbial biotechnology, vol 2. Application in food and pharmacology Springer Nature Singapore Pte. Ltd, Singapore, pp 319–329CrossRefGoogle Scholar
  71. 71.
    Metchnikoff E (1904) Etudes sur la nature humaine: essai de philosophie optimiste. Masson & Cis, ParisGoogle Scholar
  72. 72.
    O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF (2015) Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav Brain Res 277:32–48.  https://doi.org/10.1016/j.bbr.2014.07.027 CrossRefGoogle Scholar
  73. 73.
    Belkaid Y, Hand T (2014) Role of the microbiota in immunity and inflammation. Cell 157(1):121–141CrossRefGoogle Scholar
  74. 74.
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13:701–712CrossRefGoogle Scholar
  75. 75.
    Bercik P, Collins SM, Verdu EF (2012) Microbes and the gut-brain axis. Neurogastoent Motil 24(5):405–413CrossRefGoogle Scholar
  76. 76.
    O'Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O'Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128(3):541–551CrossRefGoogle Scholar
  77. 77.
    Rohrscheib CE, Brownlie JC (2013) Microorganisms that manipulate complex animal behaviours by affecting the host’s nervous system. Springer Sci Rev 1:133–140CrossRefGoogle Scholar
  78. 78.
    Valles-Colomer M, Falony G, Darzi Y, Tigchelaar EF, Wang J, Tito RY, Schiweck C, Kurilshikov A, Joossens M, Wijmenga C, Claes S, van Oudenhove L, Zhernakova A, Vieira-Silva S, Raes J (2019) The neuroactive potential of the human gut microbiota in quality of life and depression. Nat Microbiol 4:623–632.  https://doi.org/10.1038/s41564-018-0337-x CrossRefGoogle Scholar
  79. 79.
    Sampson TR, Mazmanian SK (2015) Control of brain development, function, and behavior by the microbiome. Cell Host Microbe 17(5):565–576CrossRefGoogle Scholar
  80. 80.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF et al (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155:1451–1463CrossRefGoogle Scholar
  81. 81.
    Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, Blennerhassett PA, Fahnestock M, Moine D, Berger B, Huizinga JD, Kunze W, McLean PG, Bergonzelli GE, Collins SM, Verdu EF (2011) The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 23:1132–1139CrossRefGoogle Scholar
  82. 82.
    Foster JA, Lyte M, Meyer E, Cryan JF (2016) Gut microbiota and brain function: an evolving field in neuroscience. Int J Neuropsychopharmacol 19(5):pyv114CrossRefGoogle Scholar
  83. 83.
    We-Hsien L, Hsiao-Li C, Yen-Te H, Chien-Chen W, Chou G, Sabrina W, Ying-Chieh T (2015) Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS 128 in germ-free mice. Behav Brain Res.  https://doi.org/10.1016/j.bbr.205.10.046
  84. 84.
    Desbonnet L, Garrett L, Clarke G, Kiele B, Cryan JF, Dinan TG (2010) Effect of the probiotic Bifidobaterium infantis in the maternal separation model of depression. Neuroscience 170:1179–1188CrossRefGoogle Scholar
  85. 85.
    Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M (2016) Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell 165:1762–1775CrossRefGoogle Scholar
  86. 86.
    Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM, Logan AC (2009) A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 1:6CrossRefGoogle Scholar
  87. 87.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Naliboff B, Meyer EA (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144:1394–1401CrossRefGoogle Scholar
  88. 88.
    Steenbergen L, Sellaro R, van Hemert S, Bosch JA, Colzato LS (2015) A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain Behav Immun 48:258–264CrossRefGoogle Scholar
  89. 89.
    Benton D, Williams C, Brown A (2006) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61(3):355–361CrossRefGoogle Scholar
  90. 90.
    Markle JGM, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, Rolle-Kampczyk U, von Bergen M, McCoy KD, Macpherson AJ, Danska JS (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339:1084–1088CrossRefGoogle Scholar
  91. 91.
    Tsavkelova EA, Botvinko IV, Kudrin VS, Oleskin AV (2000) Detection of neuromediator amines in microorganisms by high-performance liquid chromatography. Dokl Akad Nauk 372:840–842Google Scholar
  92. 92.
    Shishov VA, Kirovskaya TA, Kudrin VS, Oleskin AV (2009) Amine neuromediators, their precursors, and oxidation products in the culture of Escherichia coli K-12. Appl Biochem Microbiol 45(5):494–497CrossRefGoogle Scholar
  93. 93.
    Malikina KD, Shishov VA, Chuvelev DI, Kudrin VS, Oleskin AV (2010) Regulatory role of neuromediator amines in Saccharomyces cerevisiae cells. Appl Biochem Microbiol 46(6):672–677CrossRefGoogle Scholar
  94. 94.
    Eldrup E (2004) Significance and origin of DOPA, DOPAC and dopamine-sulfate in plasma, tissue and cerebrospinal fluid. Dan Med Bull 31:34–62Google Scholar
  95. 95.
    Özogul F (2004) Production of biogenic amines by Morganella morganii, Klebsiella pneumonia and Hafnia alvii using a rapid HPLC method. Eur Food Res Technol 219:465–469CrossRefGoogle Scholar
  96. 96.
    Vidal-Gadea AG, Pierce-Shimomura JT (2012) Conserved role of dopamine in the modulation of behavior. Commun Integr Biol 5:440–447CrossRefGoogle Scholar
  97. 97.
    Nakano M, Takahashi A, Sakai Y, Kawano M, Harada N, Mawatari K, Nakaya Y (2007) Catecholamine-induced stimulation of growth in Vibrio species. Lett Appl Microbiol 44:649–653CrossRefGoogle Scholar
  98. 98.
    Oneal MJ, Schafer ER, Madsen ML, Minion FC (2008) Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine. Microbiology+ 154:2581–2588Google Scholar
  99. 99.
    Anuchin AM, Chuvelev DI, Kirovskaya TA, Oleskin AV (2008) Effect of neuromediator monoamines on the growth characteristics of Escherichia coli K-12. Microbiology+ 77(6):758–765Google Scholar
  100. 100.
    Kovtun AS, Averina OV, Zakharevich NV, Kasyanov A, Danilenko VN (2018) In silico detection of the metagenomic signature that reflects the neurochemical potential of the normal human intestinal microbiota. Genetics+ 54(9):1081–1091.  https://doi.org/10.1134/S0016675818090084 Google Scholar
  101. 101.
    Yunes RA, Poluektova RU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN (2016) GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42:1–8.  https://doi.org/10.1016/j.anaerobe.2016.10.011 CrossRefGoogle Scholar
  102. 102.
    Oleskin AV, Zhilenkova OG, Shenderov BA, Amerhanova AM, Kudrin VS, Klodt PM (2014) Lactic-acid bacteria supplement fermented dairy products with human behavior-modifying neuroactive compounds. J Pharm Nutrit Sci 4P:199–206.  https://doi.org/10.6000/1927-5951.2014.04.03.5 CrossRefGoogle Scholar
  103. 103.
    Lee BJ, Kim JS, Kang YM, Lim JH, Kim YM, Lee MS, Jeong MH, Ahn CB, Je JY (2010) Antioxidant activity and γ-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem 122:271–276CrossRefGoogle Scholar
  104. 104.
    Roshchina VV (2010) Evolutionary considerations of neurotransmitters in microbial, plant, and animal cells. In: Lyte M, Freestone PPP (ed) Microbial endocrinology: interkingdom signaling in infectious disease and health. Springer, New York, New York, pp 17–52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.General Ecology Department, School of BiologyMoscow State UniversityMoscowRussia
  2. 2.Laboratory of Bacteriology and Parasitology, Centre for Strategic Planning, Russian Ministry of Health; Moscow, Research Laboratory for Design & Implementation of Personalized Nutrition-Related Products & DietsK. G. Razumovsky University of Technology & ManagementMoscowRussia

Personalised recommendations