Advertisement

Probiotic Lactobacillus johnsonii BS15 Promotes Growth Performance, Intestinal Immunity, and Gut Microbiota in Piglets

  • Jinge Xin
  • Dong Zeng
  • Hesong Wang
  • Ning Sun
  • Ying Zhao
  • Yan Dan
  • Kangcheng Pan
  • Bo Jing
  • Xueqin Ni
Article

Abstract

Numerous studies have investigated the beneficial effects of Lactobacillus johnsonii strain BS15 on mice and broilers. This study aimed to understand the growth-promoting effects of BS15 on piglets. We determined the effects of L. johnsonii BS15 and a commercial probiotic strain, Bacillus subtilis JS01. Seventy-two suckling piglets (1 ± 2-day-old) were divided into three groups and fed with diets supplemented with 1 × 106 colony-forming units (cfu) BS15 per gram of feed (BS15 group); 1 × 106 cfu JS01 per gram of feed (JS01 group); or de Man, Rogosa, and Sharpe liquid medium (control group) 35 days. Compared with JS01, BS15 significantly improved the daily weight gain and diarrhea index of the piglets. The BS15 group had higher fecal sIgA levels, whereas the JS01 group had high fecal sIgA levels only after 35 days of treatment. Additionally, BS15 altered T cell subsets in peripheral blood by significantly increasing the CD3+CD4+ T cell percentage and CD3+CD4+/CD3+CD8+ ratio and decreasing the CD3+CD8+ T cell percentage. Moreover, BS15 exerted better beneficial effects on fecal microbiota than JS01. Specifically, the BS15 group had markedly increased Clostridium, Peptococcus, and Lactobacillus populations on days 7 and 21 of treatment and reduced Escherichia coli populations on day 35 of treatment. These findings indicated that BS15 can be applied as a probiotic that promotes growth performance and controls diarrhea in piglets.

Keywords

T cell subsets Lactobacillus johnsonii Intestinal immunity Probiotic Piglet 

Notes

Funding

This study was supported by the International Cooperative Project of Science and Technology Bureau of Sichuan Province (2018HH0103), as well as the Science and Technology Support Project of Science and Technology Bureau of Sichuan Province (2014FZ0076). Both funding bodies provided funding support for the animal purchase and index determination.

Compliance with Ethical Standards

All animal experiments were performed in accordance with the guidelines for the care and use of laboratory animals approved by the Institutional Animal Care and Use Committee of Sichuan Agricultural University (approval number, SYXKchuan2014-187).

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Van IF, Rood JI, Moore RJ, Titball RW (2009) Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens. Trends Microbiol 17(1):32–36.  https://doi.org/10.1016/j.tim.2008.09.005 CrossRefGoogle Scholar
  2. 2.
    Unno T, Kim JM, Guevarra RB, Nguyen SG (2015) Effects of antibiotic growth promoter and characterization of ecological succession in Swine gut microbiota. J Microbiol Biotechnol 25(4):431–438CrossRefGoogle Scholar
  3. 3.
    Dahiya JP, Wilkie DC, Van Kessel AG, Drew MD (2006) Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim Feed Sci Technol 129(1–2):60–88.  https://doi.org/10.1016/j.anifeedsci.2005.12.003 CrossRefGoogle Scholar
  4. 4.
    Kukkonen K, Savilahti E, Haahtela T, Juntunen-Backman K, Korpela R, Poussa T, Tuure T, Kuitunen M (2007) Probiotics and prebiotic galacto-oligosaccharides in the prevention of allergic diseases: a randomized, double-blind, placebo-controlled trial. J Allergy Clin Immunol 119(1):192–198.  https://doi.org/10.1016/j.jaci.2006.09.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Li Z, Yang S, Lin H, Huang J, Watkins PA, Moser AB, Desimone C, Song XY, Diehl AM (2003) Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 37(2):343–350.  https://doi.org/10.1053/jhep.2003.50048 CrossRefPubMedGoogle Scholar
  6. 6.
    Reid G, Guarner F, Gibson G, Tompkins T, Gill H, Rowland I, Rastall B, Pot B, Sanders ME (2004) Discussion on toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology 127(1):366–367.  https://doi.org/10.1053/j.gastro.2004.05.052 CrossRefPubMedGoogle Scholar
  7. 7.
    Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I (2015) Bifidobacterium longum CCM 7952 promotes epithelial barrier function and prevents acute DSS-induced colitis in strictly strain-specific manner. PLoS One 10(7):e0134050-1–e0134050-20.  https://doi.org/10.1371/journal.pone.0134050 CrossRefGoogle Scholar
  8. 8.
    Xin J, Zeng D, Wang H, Ni X, Yi D, Pan K, Jing B (2014) Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol 98(15):6817–6829.  https://doi.org/10.1007/s00253-014-5752-1 CrossRefPubMedGoogle Scholar
  9. 9.
    Liu C, Zhu Q, Chang J, Yin Q, Song A, Li Z, Wang E, Lu F (2017) Effects of Lactobacillus casei and Enterococcus faecalis on growth performance, immune function and gut microbiota of suckling piglets. Arch Anim Nutr 71(2):120–133.  https://doi.org/10.1080/1745039x.2017.1283824 CrossRefPubMedGoogle Scholar
  10. 10.
    Wang H, Ni X, Qing X, Zeng D, Luo M, Liu L, Li G, Pan K, Jing B (2017) Live probiotic Lactobacillus johnsonii BS15 promotes growth performance and lowers fat deposition by improving lipid metabolism, intestinal development, and gut microflora in broilers. Front Microbiol 8:1073.  https://doi.org/10.3389/fmicb.2017.01073 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Qing X, Zeng D, Wang H, Ni X, Liu L, Lai J, Khalique A, Pan K, Jing B (2017) Preventing subclinical necrotic enteritis through Lactobacillus johnsonii BS15 by ameliorating lipid metabolism and intestinal microflora in broiler chickens. AMB Express 7:139-1–139-12.  https://doi.org/10.1186/s13568-017-0439-5 CrossRefGoogle Scholar
  12. 12.
    Wang H, Ni X, Liu L, Zeng D, Lai J, Qing X, Li G, Pan K, Jing B (2017) Controlling of growth performance, lipid deposits and fatty acid composition of chicken meat through a probiotic, Lactobacillus johnsonii during subclinical Clostridium perfringens infection. Lipids Health Dis 16:38-1–38-10.  https://doi.org/10.1186/s12944-017-0408-7 CrossRefGoogle Scholar
  13. 13.
    Alonso L, Fontecha J, Cuesta P (2016) Combined effect of Lactobacillus acidophilus and beta-cyclodextrin on serum cholesterol in pigs. Br J Nutr 115(1):1–5.  https://doi.org/10.1017/s0007114515003736 CrossRefPubMedGoogle Scholar
  14. 14.
    Lee JH, Chae JP, Lee JY, Lim JS, Kim GB, Ham JS, Chun J, Kang DK (2011) Genome sequence of Lactobacillus johnsonii PF01, isolated from piglet feces. J Bacteriol 193(18):5030–5031.  https://doi.org/10.1128/jb.05640-11 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang M, Pan L, Zhou P, Lv J, Zhang Z, Wang Y, Zhang Y (2015) Protection against foot-and-mouth disease virus in guinea pigs via oral administration of recombinant Lactobacillus plantarum expressing VP1. PLoS One 10(12):e0143750-1–e0143750-18.  https://doi.org/10.1371/journal.pone.0143750 CrossRefGoogle Scholar
  16. 16.
    Yang Y, Galle S, Le MH, Zijlstra RT, Ganzle MG (2015) Feed fermentation with reuteran- and levan-producing Lactobacillus reuteri reduces colonization of weanling pigs by enterotoxigenic Escherichia coli. Appl Environ Microbiol 81(17):5743–5752.  https://doi.org/10.1128/aem.01525-15 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yang KM, Jiang ZY, Zheng CT, Wang L, Yang XF (2014) Effect of Lactobacillus plantarum on diarrhea and intestinal barrier function of young piglets challenged with enterotoxigenic Escherichia coli K88. J Anim Sci 92(4):1496–1503.  https://doi.org/10.2527/jas.2013-6619 CrossRefPubMedGoogle Scholar
  18. 18.
    Missottena JAM, Goris J, Michiels bJ, Van Coillie E, Herman L, De Smet S, Dierick NA, Heyndrickx M (2009) Screening of isolated lactic acid bacteria as potential beneficial strains for fermented liquid pig feed production. Anim Feed Sci Technol 150:122–138.  https://doi.org/10.1016/j.anifeedsci.2008.08.002 CrossRefGoogle Scholar
  19. 19.
    Chiang ML, Chen HC, Chen KN, Lin YC, Lin YT, Chen MJ (2015) Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. J Anim Sci 28(8):1163–1170.  https://doi.org/10.5713/ajas.14.0780 CrossRefGoogle Scholar
  20. 20.
    Council N (1999) Nutrient requirements of swine: 10th revised editionGoogle Scholar
  21. 21.
    Shu Q, Qu F, Gill HS (2001) Probiotic treatment using Bifidobacterium lactis HN019 reduces weanling diarrhea associated with rotavirus and Escherichia coli infection in a piglet model. J Pediatr Gastroenterol Nutr 33(2):171–177CrossRefGoogle Scholar
  22. 22.
    Lohse L, Nielsen J, Eriksen L (2006) Long-term treatment of pigs with low doses of monoclonal antibodies against porcine CD4 and CD8 antigens. Apmis 114(1):23–31.  https://doi.org/10.1111/j.1600-0463.2006.apm_301.x CrossRefPubMedGoogle Scholar
  23. 23.
    Wang HS, Ni XQ, Qing XD, Liu L, Lai J, Khalique A, Li GY, Pan KC, Jing B, Zeng D (2017) Probiotic enhanced intestinal immunity in broilers against subclinical necrotic enteritis. Front Immunol 8:1592-1–1592-14.  https://doi.org/10.3389/fimmu.2017.01592 CrossRefGoogle Scholar
  24. 24.
    Zuckermann FA, Husmann RJ (1996) Functional and phenotypic analysis of porcine peripheral blood CD4/CD8 double-positive T cells. Immunology 87(3):500–512CrossRefGoogle Scholar
  25. 25.
    Jonasson R, Johannisson A, Jacobson M, Fellstrom C, Jensen-Waern M (2004) Differences in lymphocyte subpopulations and cell counts before and after experimentally induced swine dysentery. J Med Microbiol 53(Pt 4):267–272.  https://doi.org/10.1099/jmm.0.05359-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Jones DH, McBride BW, Thornton C, O’Hagan DT, Robinson A, Farrar GH (1996) Orally administered microencapsulated Bordetella pertussis fimbriae protect mice from B. pertussis respiratory infection. Infect Immun 64(2):489–494PubMedPubMedCentralGoogle Scholar
  27. 27.
    Peters IR, Calvert EL, Hall EJ, Day MJ (2004) Measurement of immunoglobulin concentrations in the feces of healthy dogs. Clin Diagn Lab Immunol 11(5):841–848.  https://doi.org/10.1128/CDLI.11.5.841-848.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Collins CH, Lyne PM, Grange JM (1989) Microbiological methods. Oxford, UK, pp 127–129Google Scholar
  29. 29.
    Bhushan B, Tomar SK, Mandal S (2016) Phenotypic and genotypic screening of human-originated lactobacilli for vitamin B12 production potential: process validation by micro-assay and UFLC. Appl Microbiol Biotechnol 100(15):6791–6803.  https://doi.org/10.1007/s00253-016-7639-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Plant L, Conway P (2001) Association of Lactobacillus spp. with peyer’s patches in mice. Clin Diagn Lab Immunol 8(2):320–324.  https://doi.org/10.1128/cdli.8.2.320-324.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Turpin W, Humblot C, Thomas M, Guyot JP (2010) Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms. Int J Food Microbiol 143(3):87–102.  https://doi.org/10.1016/j.ijfoodmicro.2010.07.032 CrossRefPubMedGoogle Scholar
  32. 32.
    Chu GM, Lee SJ, Jeong HS, Lee SS (2011) Efficacy of probiotics from anaerobic microflora with prebiotics on growth performance and noxious gas emission in growing pigs. Anim Sci J 82(2):282–290.  https://doi.org/10.1111/j.1740-0929.2010.00828.x CrossRefPubMedGoogle Scholar
  33. 33.
    De Angelis M, Siragusa S, Berloco M, Caputo L, Settanni L, Alfonsi G, Amerio M, Grandi A, Ragni A, Gobbetti M (2006) Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res Microbiol 157(8):792–801.  https://doi.org/10.1016/j.resmic.2006.05.003 CrossRefPubMedGoogle Scholar
  34. 34.
    Lan RX, Lee SI, Kim IH (2016) Effects of multistrain probiotics on growth performance, nutrient digestibility, blood profiles, faecal microbial shedding, faecal score and noxious gas emission in weaning pigs. J Anim Physiol Anim Nutr 100(6):1130–1138.  https://doi.org/10.1111/jpn.12501 CrossRefGoogle Scholar
  35. 35.
    Abe F, Ishibashi N, Shimamura S (1995) Effect of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J Dairy Sci 78(12):2838–2846.  https://doi.org/10.3168/jds.S0022-0302(95)76914-4 CrossRefPubMedGoogle Scholar
  36. 36.
    Fairbrother JM, Nadeau É, Gyles CL (2005) Escherichia coli in postweaning diarrhea in pigs: an update on bacterial types, pathogenesis, and prevention strategies. Anim Health Res Rev 6(01):17–39.  https://doi.org/10.1079/ahr2005105 CrossRefPubMedGoogle Scholar
  37. 37.
    Mcleese JM, Tremblay ML, Patience JF, Christison GI (1992) Water intake patterns in the weanling pig: effect of water quality, antibiotics and probiotics. Anim Sci J 54(54):135–142Google Scholar
  38. 38.
    Leser TD, Knarreborg A, Worm J (2008) Germination and outgrowth of Bacillus subtilis and Bacillus licheniformis spores in the gastrointestinal tract of pigs. J Appl Microbiol 104(4):1025–1033.  https://doi.org/10.1111/j.1365-2672.2007.03633.x CrossRefPubMedGoogle Scholar
  39. 39.
    Fan G, Chang J, Yin Q, Wang X, Dang X (2015) Effects of probiotics, oligosaccharides, and berberine combinationson growth performance of pigs. Turk J Vet Anim Sci 39(6):637–642CrossRefGoogle Scholar
  40. 40.
    Robertson G, Leclercq I, Farrell GC (2001) II. Cytochrome P-450 enzymes and oxidative stress. Am J Physiol Gastrointest Liver 281(5):G1135–G11G9CrossRefGoogle Scholar
  41. 41.
    Yuan SB, Chen DW, Zhang KY, Yu B (2007) Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. J Anim Sci 20(10):1600–1605Google Scholar
  42. 42.
    Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128.  https://doi.org/10.1016/0891-5849(91)90192-6 CrossRefPubMedGoogle Scholar
  43. 43.
    Wagner BA, Buettner GR, Burns CP (1994) Free radical-mediated lipid peroxidation in cells: oxidizability is a function of cell lipid bis-allylic hydrogen content. Biochemistry 33(15):4449–4453CrossRefGoogle Scholar
  44. 44.
    Victor VM, De la Fuente M (2002) N-acetylcysteine improves in vitro the function of macrophages from mice with endotoxininduced oxidative stress. Free Radic Res 36(1):33–45.  https://doi.org/10.1080/10715760210160 CrossRefPubMedGoogle Scholar
  45. 45.
    De La Fuente M (2002) Effects of antioxidants on immunesystem ageing. Eur J Clin Nutr 56(3):s5–s8.  https://doi.org/10.1038/sj.ejcn.1601476 CrossRefPubMedGoogle Scholar
  46. 46.
    Knight JA (2000) Review: free radicals, antioxidants and immune system. Ann Clin Lab Sci 30(2):145–158.  https://doi.org/10.1309/EGX2-199E-GJKA-H9M4 CrossRefPubMedGoogle Scholar
  47. 47.
    Brisbin JT, Zhou H, Gong J, Sabour P, Akbari MR, Haghighi HR, Yu H, Clarke A, Sarson AJ, Sharif S (2008) Gene expression profiling of chicken lymphoid cells after treatment with Lactobacillus acidophilus cellular components. Dev Comp Immunol 32(5):563–574.  https://doi.org/10.1016/j.dci.2007.09.003 CrossRefPubMedGoogle Scholar
  48. 48.
    Wilson AD, Stokes CR, Bourne FJ (1986) Morphology and functional characteristics of isolated porcine intraepithelial lymphocytes. Immunology 59(1):109–113PubMedPubMedCentralGoogle Scholar
  49. 49.
    Stüve O, Marra CM, Bar-Or A, Niino M, Cravens PD, Cepok S, Frohman EM, Phillips JT, Arendt G, Jerome KR, Cook L, Grand’Maison F, Hemmer B, Monson NL, Racke MK (2006) Altered CD4+/CD8+ T-cell ratios in cerebrospinal fluid of natalizumab-treated patients with multiple sclerosis. Arch Neurol 63(10):1383–1387.  https://doi.org/10.1001/archneur.63.10.1383 CrossRefPubMedGoogle Scholar
  50. 50.
    Salzman NH (2014) The role of the microbiome in immune cell development. Ann Allergy Asthma Immunol 113(6):593–598.  https://doi.org/10.1016/j.anai.2014.08.020 CrossRefPubMedGoogle Scholar
  51. 51.
    Hernández J, Garfias Y, Nieto A, Mercado C, Montaño LF, Zenteno E (2001) Comparative evaluation of the CD4+CD8+ and CD4+CD8- lymphocytes in the immune response to porcine rubulavirus. Vet Immunol Immunopathol 79(3–4):249–259CrossRefGoogle Scholar
  52. 52.
    Kick AR, Tompkins MB, Flowers WL, Whisnant CS, Almond GW (2012) Effeets of stress associated with weaning on the adaptive immune system in pigs. J Anim Sci 90:649–656.  https://doi.org/10.2527/jas.2010-3470 CrossRefPubMedGoogle Scholar
  53. 53.
    Tuchscherer M, Kanitz E, Puppe B, TuchschTerer A, Viergutz T (2009) Changes in endocrine and immune responses of neonatal pigs exposed to a psychosocial stressor. Res Vet Sci 87:380–388.  https://doi.org/10.1016/j.rvsc.2009.04.010 CrossRefPubMedGoogle Scholar
  54. 54.
    Siggers RH, Siggers J, Boye M, Thymann T, Mølbak L, Leser T, Jensen BB, Sangild PT (2008) Early administration of probiotics alters bacterial colonization and limits diet-induced gut dysfunction and severity of necrotizing enterocolitis in preterm pigs. J Nutr 138(8):1437–1444.  https://doi.org/10.1093/jn/138.8.1437 CrossRefPubMedGoogle Scholar
  55. 55.
    Nollet H, Deprez P, Van Driessche E, Muylle E (1999) Protection of just weaned pigs against infection with F18+ Escherichia coli by non-immune plasma powder. Vet Microbiol 65(1):37–45CrossRefGoogle Scholar
  56. 56.
    Mori K, Ito T, Miyamoto H, Ozawa M, Wada S, Kumagai Y, Matsumoto J, Naito R, Nakamura S, Kodama H, Kurihara Y (2011) Oral administration of multispecies microbial supplements to sows influences the composition of gut microbiota and fecal organic acids in their post-weaned piglets. J Biosci Bioeng 112(2):145–150.  https://doi.org/10.1016/j.jbiosc.2011.04.009 CrossRefPubMedGoogle Scholar
  57. 57.
    Wang JQ, Yin FG, Zhu C, Yu H, Niven SJ, de Lange CFM, Gong J (2012) Evaluation of probiotic bacteria for their effects on the growth performance and intestinal microbiota of newly-weaned pigs fed fermented high-moisture maize. Livest Sci 145(1):79–86.  https://doi.org/10.1016/j.livsci.2011.12.024 CrossRefGoogle Scholar
  58. 58.
    Lindner C, Wahl B, Fohse L, Suerbaum S, Macpherson AJ, Prinz I, Pabst O (2012) Age, microbiota, and T cells shape diverse individual IgA repertoires in the intestine. J Exp Med 209(2):365–377.  https://doi.org/10.1084/jem.20111980 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lammers A, Wieland WH, Kruijt L, Jansma A, Straetemans T, Schots A, den Hartog G, Parmentier HK (2010) Successive immunoglobulin and cytokine expression in the small intestine of juvenile chicken. Dev Comp Immunol 34(12):1254–1262.  https://doi.org/10.1016/j.dci.2010.07.001 CrossRefPubMedGoogle Scholar
  60. 60.
    Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, Degnan PH, Hu J, Peter I, Zhang W, Ruggiero E, Cho JH, Goodman AL, Flavell RA (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158(5):1000–1010.  https://doi.org/10.1016/j.cell.2014.08.006 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Van LA, Kroese FG, Visser A, Nelis GF, Westerveld BD, Jansen PL, Hunter JO (2004) Immunoglobulin coating of faecal bacteria in inflammatory bowel disease. Eur J Gastroenterol Hepatol 16(7):669–674CrossRefGoogle Scholar
  62. 62.
    Bakker-Zierikzee AM, van Tol EAF, Kroes H, Alles MS, Kok FJ, Bindels JG (2006) Faecal sIgA secretion in infants fed on pre- or probiotic infant formula. Pediatr Allergy Immunol 17:134–140.  https://doi.org/10.1111/j.1399-3038.2005.00370.x CrossRefPubMedGoogle Scholar
  63. 63.
    Curtis J, Bourne FJ (1971) Immunoglobulin quantitation in sow serum, colostrum and milk and the serum of young pigs. Biochim Biophys Acta 236(1):319–332CrossRefGoogle Scholar
  64. 64.
    Kabeerdoss J, Devi RS, Mary RR, Prabhavathi D, Vidya R, Mechenro J, Mahendri NV, Pugazhendhi S, Ramakrishna BS (2011) Effect of yoghurt containing Bifidobacterium lactis Bb12(R) on faecal excretion of secretory immunoglobulin A and human beta-defensin 2 in healthy adult volunteers. Nutr J 10:138-1–138-4.  https://doi.org/10.1186/1475-2891-10-138 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jinge Xin
    • 1
  • Dong Zeng
    • 1
  • Hesong Wang
    • 1
  • Ning Sun
    • 1
  • Ying Zhao
    • 1
  • Yan Dan
    • 2
  • Kangcheng Pan
    • 1
  • Bo Jing
    • 1
  • Xueqin Ni
    • 1
  1. 1.College of Veterinary MedicineSichuan Agricultural UniversityChengduChina
  2. 2.Chongqing Fishery Sciences Research InstituteChongqingChina

Personalised recommendations