Effects of Lactobacillus acidophilus and Bifidobacterium bifidum Probiotics on the Expression of MicroRNAs 135b, 26b, 18a and 155, and Their Involving Genes in Mice Colon Cancer

  • Zahra Heydari
  • Mahdi Rahaie
  • Ali Mohammad AlizadehEmail author
  • Shahram AgahEmail author
  • Solmaz Khalighfard
  • Sahar Bahmani


A wide range of sources supports that the link between diet and colorectal cancer may be due to an imbalance of the intestinal microflora. In this case, it seems that the probiotics may have a possible molecular mechanism via microRNAs (miRNAs). The present study is aimed to evaluate the effects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the expression of miRNAs 135b, 26b, 18a, and 155 and their target genes, including APC, PTEN, KRAS, and PU.1 in mouse azoxymethane (AOM)-induced colon cancer. Thirty-eight male BALB/c mice were randomly divided into four groups: the control, AOM, Lactobacillus acidophilus, and Bifidobacterium bifidum to deliberate the effects of the probiotics on the miRNAs and their target genes. Except for the control group, the rest groups were weekly given AOM (15 mg/kg, s.c) in three consecutive weeks to induce mouse colon cancer. The animals were given 1.5 g powders of L. acidophilus (1 × 109 cfu/g) and B. bifidum (1 × 109 cfu/g) in 30 cc drinking water in the related groups for 5 months. At the end of the study, the animals were sacrificed and their blood and colon samples were removed for the molecular analyses. The results showed that the expression of the miR-135b, miR-155, and KRAS was increased in the AOM group compared to the control group in both the plasma and the colon tissue samples, and the consumption of the probiotics decreased their expression. Moreover, the miR-26b, miR-18a, APC, PU.1, and PTEN expressions were decreased in the AOM group compared to the control group and the consumption of the probiotics increased their expressions. It seems that Lactobacillus acidophilus and Bifidobacterium bifidum though increasing the expression of the tumor suppressor miRNAs and their target genes and decreasing the oncogenes can improve colon cancer treatment.


Colon cancer Gene MiRNA Lactobacillus acidophilus Bifidobacterium bifidum 


Funding Information

This study was supported by Iran University of Medical Sciences (Grant No. 24067).

Compliance with Ethical Standards

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Conflict of Interest

The authors of the manuscript have no conflicts of interest to declare and are responsible for the content of the paper.


None of the funding sources had any role in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.


  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917CrossRefGoogle Scholar
  2. 2.
    Rafter J (2004) The effects of probiotics on colon cancer development. Nutr Res Rev 17(2):277–284CrossRefGoogle Scholar
  3. 3.
    Uccello M, Malaguarnera G, Basile F, D'Agata V, Malaguarnera M, Bertino G, Vacante M, Drago F, Biondi A (2012) Potential role of probiotics on colorectal cancer prevention. BMC Surg 12(Suppl 1):S35. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hotel ACP (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, ArgentinaGoogle Scholar
  5. 5.
    Iannitti T, Palmieri B (2010) Therapeutical use of probiotic formulations in clinical practice. Clin Nutr 29(6):701–725CrossRefGoogle Scholar
  6. 6.
    Quigley EM (2010) Prebiotics and probiotics; modifying and mining the microbiota. Pharmacol Res 61(3):213–218CrossRefGoogle Scholar
  7. 7.
    Grajek W, Olejnik A, Sip A (2005) Probiotics, prebiotics and antioxidants as functional foods. Acta Biochim Pol 52(3):665–671PubMedGoogle Scholar
  8. 8.
    Ranji P, Akbarzadeh A, Rahmati-Yamchi M (2015) Associations of probiotics with vitamin D and leptin receptors and their effects on colon cancer. Asian Pac J Cancer Prev 16(9):3621–3627CrossRefGoogle Scholar
  9. 9.
    Singh J, Rivenson A, Tomita M, Shimamura S, Ishibashi N, Reddy BS (1997) Bifidobacterium longum, a lactic acid-producing intestinal bacterium inhibits colon cancer and modulates the intermediate biomarkers of colon carcinogenesis. Carcinogenesis 18(4):833–841CrossRefGoogle Scholar
  10. 10.
    Agah S, Alizadeh AM (2018) More protection of Lactobacillus acidophilus than Bifidobacterium bifidum probiotics on azoxymethane-induced mouse colon cancer. Probiotics Antimicrob Proteins.
  11. 11.
    Khavari-Daneshvar H, Mosavi M, Khodayari H, Rahimi E, Ranji P, Mohseni AH, Mahmudian R, Shidfar F, Agah S, Alizadeh AM (2017) Modifications of mice gut microflora following oral consumption of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics. Turk J Med Sci 47(2):689–694CrossRefGoogle Scholar
  12. 12.
    Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298(6):G807–G819CrossRefGoogle Scholar
  13. 13.
    Kreuzer-Redmer S, Bekurtz JC, Arends D, Bortfeldt R, Kutz-Lohroff B, Sharbati S, Einspanier R, Brockmann GA (2016) Feeding of Enterococcus faecium ncimb 10415 leads to intestinal miRNA-423-5p-induced regulation of immune-relevant genes. Appl Environ Microbiol 82(8):2263–2269CrossRefGoogle Scholar
  14. 14.
    Schetter AJ, Harris CC (2009) Plasma microRNAs: a potential biomarker for colorectal cancer? Gut 58(10):1318–1319CrossRefGoogle Scholar
  15. 15.
    Slaby O, Svoboda M, Michalek J, Vyzula R (2009) MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol Cancer 8:102. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Farsinejad S, Rahaie M, Alizadeh AM, Mir-Derikvand M, Gheisary Z, Nosrati H, Khalighfard S (2016) Expression of the circulating and the tissue microRNAs after surgery, chemotherapy, and radiotherapy in mice mammary tumor. Tumor Biol 37(10):14225–14234CrossRefGoogle Scholar
  17. 17.
    Khori V, Alizadeh AM, Gheisary Z, Farsinejad S, Najafi F, Khalighfard S, Ghafari F, Hadji M, Khodayari H (2016) The effects of low-level laser irradiation on breast tumor in mice and the expression of let-7a, miR-155, miR-21, miR125, and miR376b. Lasers Med Sci 31(9):1775–1782CrossRefGoogle Scholar
  18. 18.
    Thomas J, Ohtsuka M, Pichler M, Ling H (2015) MicroRNAs: clinical relevance in colorectal cancer. Int J Mol Sci 16(12):28063–28076CrossRefGoogle Scholar
  19. 19.
    Rabiee-Ghahfarrokhi B, Rafiei F, Niknafs AA, Zamani B (2015) Prediction of microRNA target genes using an efficient genetic algorithm-based decision tree. FEBS open bio 5:877–884CrossRefGoogle Scholar
  20. 20.
    Endzelins E, Berger A, Melne V, Bajo-Santos C, Sobolevska K, Abols A, Rodriguez M, Santare D, Rudnickiha A, Lietuvietis V (2017) Detection of circulating miRNAs: comparative analysis of extracellular vesicle-incorporated miRNAs and cell-free miRNAs in whole plasma of prostate cancer patients. BMC Cancer 17(1):730. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Ristau J, Staffa J, Schrotz-King P, Gigic B, Makar KW, Hoffmeister M, Brenner H, Ulrich A, Schneider M, Ulrich CM (2014) Suitability of circulating miRNAs as potential prognostic markers in colorectal cancer. Cancer Epidemiol Biomark Prev 23(12):2632–2637CrossRefGoogle Scholar
  22. 22.
    Alizadeh AM, Khaniki M, Azizian S, Mohaghgheghi MA, Sadeghizadeh M, Najafi F (2012) Chemoprevention of azoxymethane-initiated colon cancer in rat by using a novel polymeric nanocarrier-curcumin. Eur J Pharmacol 689(1–3):226–232CrossRefGoogle Scholar
  23. 23.
    Isanejad A, Alizadeh AM, Shalamzari SA, Khodayari H, Khodayari S, Khori V, Khojastehnjad N (2016) MicroRNA-206, let-7a and microRNA-21 pathways involved in the anti-angiogenesis effects of the interval exercise training and hormone therapy in breast cancer. Life Sci 151:30–40CrossRefGoogle Scholar
  24. 24.
    Khori V, Shalamzari SA, Isanejad A, Alizadeh AM, Alizadeh S, Khodayari S, Khodayari H, Shahbazi S, Zahedi A, Sohanaki H (2015) Effects of exercise training together with tamoxifen in reducing mammary tumor burden in mice: possible underlying pathway of miR-21. Eur J Pharmacol 765:179–187CrossRefGoogle Scholar
  25. 25.
    Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9:34. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefGoogle Scholar
  27. 27.
    Nagel R, le Sage C, Diosdado B, van der Waal M, Oude Vrielink JA, Bolijn A, Meijer GA, Agami R (2008) Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res 68(14):5795–5802CrossRefGoogle Scholar
  28. 28.
    Bandres E, Cubedo E, Agirre X, Malumbres R, Zarate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzo M, Garcia-Foncillas J (2006) Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer 5:29. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Xu XM, Qian JC, Deng ZL, Cai Z, Tang T, Wang P, Zhang KH, Cai JP (2012) Expression of miR-21, miR-31, miR-96, and miR-135b is correlated with the clinical parameters of colorectal cancer. Oncol Lett 4(2):339–345CrossRefGoogle Scholar
  30. 30.
    Fodde R (2002) The APC gene in colorectal cancer. Eur J Cancer 38(7):867–871CrossRefGoogle Scholar
  31. 31.
    Shimizu Y, Ikeda S, Fujimori M, Kodama S, Nakahara M, Okajima M, Asahara T (2002) Frequent alterations in the Wnt signaling pathway in colorectal cancer with microsatellite instability. Genes Chromosomes and Cancer 33(1):73–81CrossRefGoogle Scholar
  32. 32.
    Thompson RC, Herscovitch M, Zhao I, Ford TJ, Gilmore TD (2010) NF-κB down-regulates expression of the B-lymphoma marker CD10 through a miR-155/PU.1 pathway. J Biol Chem 286(3):1675–1682CrossRefGoogle Scholar
  33. 33.
    Naser WM, Shawarby MA, Al-Tamimi DM, Seth A, Al-Quorain A, Al Nemer AM, Albagha OM (2014) Novel KRAS gene mutations in sporadic colorectal cancer. PLoS One 9(11):e113350. CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vigorito E Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S, Das PP, Miska EA, Rodriguez A, Bradley A, Smith KG, Rada C, Enright AJ, Toellner KM, Maclennan IC, Turner M (2007) MicroRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27:847–859CrossRefGoogle Scholar
  35. 35.
    DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288(5470):1439–1441CrossRefGoogle Scholar
  36. 36.
    Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T (2009) MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN). J Biol Chem 284(24):16334–16342CrossRefGoogle Scholar
  37. 37.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A (2005) BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 207(2):243–249CrossRefGoogle Scholar
  38. 38.
    Xie H, Ye M, Feng R, Graf T (2004) Stepwise reprogramming of B cells into macrophages. Cell 117(5):663–676CrossRefGoogle Scholar
  39. 39.
    Palumbo T, Faucz FR, Azevedo M, Xekouki P, Iliopoulos D, Stratakis CA (2013) Functional screen analysis reveals miR-26b and miR-128 as central regulators of pituitary somatomammotrophic tumor growth through activation of the PTEN-AKT pathway. Oncogene 32(13):1651–1659CrossRefGoogle Scholar
  40. 40.
    Zhang C, Tong J, Huang G (2013) Nicotinamide phosphoribosyl transferase (Nampt) is a target of microRNA-26b in colorectal cancer cells. PLoS One 8(7):e69963. CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zeitels LR, Acharya A, Shi G, Chivukula D, Chivukula RR, Anandam JL, Abdelnaby AA, Balch GC, Mansour JC, Yopp AC, Richardson JA, Mendell JT (2014) Tumor suppression by miR-26 overrides potential oncogenic activity in intestinal tumorigenesis. Genes Dev 28(23):2585–2590CrossRefGoogle Scholar
  42. 42.
    Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP (2001) PTEN and p27kip1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 27(2):222–224CrossRefGoogle Scholar
  43. 43.
    Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R (1999) Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96(4):1563–1568CrossRefGoogle Scholar
  44. 44.
    Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, Cordon-Cardo C, Pandolfi PP (2003) PTEN dose dictates cancer progression in the prostate. PLoS Biol 1(3):E59. CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tsang WP, Kwok TT (2009) The miR-18a microRNA functions as a potential tumor suppressor by targeting on K-Ras. Carcinogenesis 30(6):953–959. CrossRefPubMedGoogle Scholar
  46. 46.
    Banno K, Kisu I, Yanokura M, Tsuji K, Masuda K, Ueki A, Kobayashi Y, Yamagami W, Nomura H, Tominaga E, Susumu N, Aoki D (2012) Biomarkers in endometrial cancer: possible clinical applications (review). Oncol Lett 3(6):1175–1180CrossRefGoogle Scholar
  47. 47.
    Tsunoda T, Takashima Y, Yoshida Y, Doi K, Tanaka Y, Fujimoto T, Machida T, Ota T, Koyanagi M, Kuroki M, Sasazuki T, Shirasawa S (2011) Oncogenic KRAS regulates miR-200c and miR-221/222 in a 3D-specific manner in colorectal cancer cells. Anticancer Res 31(7):2453–2459PubMedGoogle Scholar
  48. 48.
    Yau T, Wu C, Dong Y, Tang C, Ng S, Chan F, Sung J, Yu J (2014) MicroRNA-221 and microRNA-18a identification in stool as potential biomarkers for the non-invasive diagnosis of colorectal carcinoma. Br J Cancer 111(9):1765–1771CrossRefGoogle Scholar
  49. 49.
    Hiraki M, Nishimura J, Takahashi H, Wu X, Takahashi Y, Miyo M, Nishida N, Uemura M, Hata T, Takemasa I, Mizushima T, Soh JW, Doki Y, Mori M, Yamamoto H (2015) Concurrent targeting of KRAS and AKT by miR-4689 is a novel treatment against mutant KRAS colorectal cancer. Mol Ther Nucleic Acids 4:e231. CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gill RK, Dudeja PK (2011) A novel facet to consider for the effects of butyrate on its target cells. Focus on “the short-chain fatty acid butyrate is a substrate of breast cancer resistance protein”. Am J Physiol Cell Physiol 301(5):C977–C979. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Life Science Engineering, Faculty of New Sciences and TechnologiesUniversity of TehranTehranIran
  2. 2.Cancer Research CenterTehran University of Medical SciencesTehranIran
  3. 3.Cancer Biology Research CenterTehran University of Medical ScienceTehranIran
  4. 4.Colorectal Research CenterIran University of Medical SciencesTehranIran
  5. 5.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  6. 6.Research and Development DepartmentZist Takhmir CompanyTehranIran

Personalised recommendations