Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 3, pp 999–1008 | Cite as

A Low-Molecular-Weight Compound Derived from Human Leukocytes Determines a Bactericidal Activity of the Interferon Preparation

  • A. S. VasilchenkoEmail author
  • V. A. Gritsenko
  • D. B. Kosyan
  • E. A. Rogozhin
Article
  • 48 Downloads

Abstract

The aim of this study was to characterize the structure and mode of action of antimicrobials derived from a commercial preparation of alfa-interferon. By combination of semi-preparative/analytical reversed-phase high-performance liquid chromatography, we isolated and purified a novel active substance based on carbohydrate with a complex of amino acids, which determines antimicrobial property of commercial preparation of interferon. A size-exclusion chromatography was performed and LC/ESI-MS revealed molecular masses of active substance were in the range of 180–249 Da. Edman sequencing identified phenylthiohydantoin (PTH) derivatives which consisted a set of preliminary (Asp, Glu, Gly, and Ala) and minor amino acids (Leu and Thr) at equimolar ratio. Thus, the purified active substance is a compound containing the complex of amino acids connected with carbohydrate background and called leucidin. Leucidin demonstrated antimicrobial activity against the model Escherichia coli (E. coli) K12 strain at a minimal inhibitory concentration of 20 μg mL−1. The revealed antimicrobial mechanism of action is associated with violation of the bacterial cell wall leading to a SOS response and bacterial autolysis. Despite the preliminary nature of the results, obtained data allowed us to discover the previously unknown leukocyte-derived antimicrobial molecules.

Keywords

Interferon Leukocyte human interferon preparation Alfa-interferon Antimicrobial activity Bacterial autolysis 

Notes

Acknowledgments

The authors are grateful to Dr. Nikolay Yu. Tretyakov (Institute of Chemistry, Tyumen State University); we are grateful to Dr. Ilya V. Manukhov (Moscow Institute of Physics and Technology (State University)) for providing bacterial reporter strains; we are grateful to Dr. Alexander A. Kolobov (Research Institute of Highly Pure Biopreparations, St. Peterburg, Russian Federation) for providing indolicidin preparation. We are grateful to Nadezhda N. Zhuravleva (Center for Academic Writing, Tyumen State University) for language assistance.

The research was partially performed using the equipment of the Research Resource Center “Natural Resource Management and Physico-Chemical Research” of Tyumen State University; and Federal Research Centre of Biological Systems and Agro-technologies, RAS.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12602_2018_9463_Fig6_ESM.png (119 kb)
Figure S1

(PNG 118 kb)

12602_2018_9463_MOESM1_ESM.tif (1.4 mb)
High Resolution Image (TIF 1407 kb)
12602_2018_9463_Fig7_ESM.png (10 kb)
Figure S2

(PNG 9 kb)

12602_2018_9463_MOESM2_ESM.tif (145 kb)
High Resolution Image (TIF 144 kb)
12602_2018_9463_Fig8_ESM.png (52 kb)
Figure S3

(PNG 52 kb)

12602_2018_9463_MOESM3_ESM.tif (454 kb)
High Resolution Image (TIF 453 kb)
12602_2018_9463_Fig9_ESM.png (249 kb)
Figure S4

(PNG 248 kb)

12602_2018_9463_MOESM4_ESM.tif (1 mb)
High Resolution Image (TIF 1053 kb)

References

  1. 1.
    Fensterl V, Sen GC (2009) Interferons and viral infections. Biofactors 35(1):14–20CrossRefGoogle Scholar
  2. 2.
    Matsuo A, Hayashi S, Kishida T (1974) Production and purification of human leukocyte interferon. Japan J Microbiol 18(1):21–27CrossRefGoogle Scholar
  3. 3.
    Bukharin OV, Sokolov VI, Rishuk SV (1994) The role of the activity of pathogenic enterobacteria in inactivating the antibacterial constituent of interferon during phagocytosis. Zh Mikrobiol Epidemiol Immunobiol 6:100–101Google Scholar
  4. 4.
    Yount NY, Yeaman MR (2012) Emerging themes and therapeutic prospects for anti-infective peptides. Annu Rev Pharmacol Toxicol 52:337–360CrossRefGoogle Scholar
  5. 5.
    Kaplan A, Lee MW, Wolf AJ, Limon JJ, Becker CA, Ding M, Murali R, Lee EY, Liu GY, Wong GCL, Underhill DM (2017) Direct antimicrobial activity of IFN-b. J Immunol 198(10):4036–4404CrossRefGoogle Scholar
  6. 6.
    Rogozhin EA, Slezina MP, Slavokhotova AA, Istomina EA, Korostyleva TV, Smirnov AN, Grishin EV, Egorov TA, Odintsova TI (2015) A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie 116:125–132CrossRefGoogle Scholar
  7. 7.
    Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175CrossRefGoogle Scholar
  8. 8.
    Barry AL, Craig WA, Nadler H, Reller LB, Sanders CC, Swenson JM (1999) Methods for determining bactericidal activity of antimicrobial agents; approved guideline. NCCLS document M26-A, Vol. 19 (18). NCCLS, Pennsylvania, USAGoogle Scholar
  9. 9.
    Spelhaug SR, Harlander SK (1989) Inhibition of foodborne bacterial pathogens by bacteriocins from Lactococcus lactis and Pediococcus pentosaceous. J Food Prot 52(12):856–862CrossRefGoogle Scholar
  10. 10.
    Vasilchenko AS, Vasilchenko AV, Pashkova TM, Smirnova MP, Kolodkin NI, Manukhov IV, Zavilgelsky GB, Sizova EA, Kartashova OL, Simbirtsev AS, Rogozhin EA, Duskaev GK, Sycheva MV (2017) Antimicrobial activity of the indolicidin-derived novel synthetic peptide in-58. J Pept Sci 23(12):855–863CrossRefGoogle Scholar
  11. 11.
    Malech HL (2007) The role of neutrophils in the immune system: an overview. Methods Mol Biol 412:3CrossRefGoogle Scholar
  12. 12.
    Thomas EL, Lehrer RI, Rest RF (1988) Human neutrophil antimicrobial activity. Rev Infect Dis 10(Suppl 2):S450–S456CrossRefGoogle Scholar
  13. 13.
    Miles K, Clarke DJ, Lu W, Sibinska Z, Beaumont PE, Davidson DJ, Barr TA, Campopiano DJ, Gray M (2009) Dying and necrotic neutrophils are anti-inflammatory secondary to the release of alpha-defensins. J Immunol 183(3):2122–2132CrossRefGoogle Scholar
  14. 14.
    Zanetti M (2005) The role of cathelicidins in the innate host defenses of mammals. Curr Issues Mol Biol 7:179–196Google Scholar
  15. 15.
    Borregaard N, Cowland JB (1997) Granules of the human neutrophilic Polymorphonuclear leukocyte. Blood 89(10):3503–3521Google Scholar
  16. 16.
    Ganz T, Lehrer RI (1997) Antimicrobial peptides of leukocytes. Curr Opin Hematol 4(1):53–58CrossRefGoogle Scholar
  17. 17.
    Levy O (2000) Antimicrobial proteins and peptides of blood: templates for novel antimicrobial agents. Blood 96(8):2664–2672Google Scholar
  18. 18.
    Lominadze G, Powell DW, Luerman GC, Link AJ, Ward RA, McLeish KR (2005) Proteomic analysis of human neutrophil granules. Mol Cell Proteomics 4(10):1503–1521CrossRefGoogle Scholar
  19. 19.
    Risso A (2000) Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J Leukoc Biol 68(6):785–792Google Scholar
  20. 20.
    Leiding JW (2017) Neutrophil evolution and their diseases in humans. Front Immunol 8:1009.  https://doi.org/10.3389/fimmu.2017.01009 CrossRefGoogle Scholar
  21. 21.
    Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, J Maes J, Van Woensel M, Koks C, Vanthillo N, Graf N, de Witte P, Van Gool S, Salven P, Agostinis P (2017) Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death Differ 24:832–843CrossRefGoogle Scholar
  22. 22.
    Gritsenko VA, Shukhman MG (2000) Resistance of Escherichia coli to “intercid”, a leukocyte cation protein. Zh Mikrobiol Epidemiol Immunobiol (4 Suppl):71–76Google Scholar
  23. 23.
    Gritsenko VA, Bukharin OV (2000) In vitro effect of intercide, a leukocytic cationic protein, on Escherichia coli. Antibiot Khimioter 45(1):16–20Google Scholar
  24. 24.
    Selsted ME (1997) HPLC methods for purification of antimicrobial peptides. In: Shafer WM (ed) Antibacterial peptide protocols. methods in molecular biology, vol 78. Humana PressGoogle Scholar
  25. 25.
    Garsa AK, Kumariya R, Sood SK, Kumar A, Kapila S (2014) Bacteriocin production and different strategies for their recovery and purification. Probiotics Antimicrob Proteins 6(1):47–58CrossRefGoogle Scholar
  26. 26.
    Su HL, Chou CC, Hung DJ, Lin SH, Pao IC, Lin JH, Huang FL, Dong RX, Lin JJ (2009) The disruption of bacterial membrane integrity through ROS generation induced by nanohybrids of silver and clay. Biomaterials 30(30):5979–5987CrossRefGoogle Scholar
  27. 27.
    Wang K, Dang W, Xie J, Zhu R, Sun M, Jia F, Zhao Y, An X, Qiu S, Li X, Ma Z, Yan W, Wang R (2015) Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochim Biophys Acta 1848(10 Pt A):2365–2373CrossRefGoogle Scholar
  28. 28.
    Choi H, Yang Z, Weisshaar J (2015) Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15. Proc Natl Acad Sci U S A 112:E303–E310CrossRefGoogle Scholar
  29. 29.
    Leem JY, Nishimura C, Kurata S, Shimada I, Kobayashi A, Natori S (1996) Purification and characterization of N-β-alanyl-5-S-glutathionyl-3,4-dihydroxyphenylalanine, a novel antibacterial substance of Sarcophaga peregrina (flesh fly). J Biol Chem 271(23):13573–13577CrossRefGoogle Scholar
  30. 30.
    Karimov IF, Deryabin DG, Karimova DN, Subbotina TY, Manukhov IV (2016) Evaluation of oxidative metabolism in leukocytes during phagocytosis of Escherichia coli carrying genetic constructs soxS::lux or katG::lux. Bull Exp Biol Med 161(2):276–280CrossRefGoogle Scholar
  31. 31.
    Zavilgelsky GB, Kotova VY, Manukhov IV (2007) Action of 1,1-dimethylhydrazine on bacterial cells is determined by hydrogen peroxide. Mutat Res 634(1–2):172–176CrossRefGoogle Scholar
  32. 32.
    Bayles KW (2014) Bacterial programmed cell death: making sense of a paradox. Nat Rev Microbiol 12(1):63–69CrossRefGoogle Scholar
  33. 33.
    Mileykovskaya E, Dowhan W (2005) Role of membrane lipids in bacterial division-site selection. Curr Opin Microbiol 8(2):135–142CrossRefGoogle Scholar
  34. 34.
    Mileykovskaya E, Sun Q, Margolin W, Dowhan W (1998) Localization and function of early cell division proteins in filamentous Escherichia coli cells lacking phosphatidylethanolamine. J Bacteriol 180:4252–4257Google Scholar
  35. 35.
    Zweytick D, Japelj B, Mileykovskaya E, Zorko M, Dowhan W, Blondelle SE, Riedl S, Jerala R, Lohner K (2014) N-acylated peptides derived from human Lactoferricin perturb organization of cardiolipin and phosphatidylethanolamine in cell membranes and induce defects in Escherichia coli cell division. PLoS One 9(3):e90228.  https://doi.org/10.1371/journal.pone.0090228 CrossRefGoogle Scholar
  36. 36.
    Scheinpflug K, Wenzel M, Krylova O, Bandow JE, Dathe M, Strahl H (2017) Antimicrobial peptide cWFW kills by combining lipid phase separation with autolysis. Sci Rep 7:44332.  https://doi.org/10.1038/srep44332 CrossRefGoogle Scholar
  37. 37.
    Subbalakshmi C, Sitaram N (1998) Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett 160(1):91–96CrossRefGoogle Scholar
  38. 38.
    Meller S, Di Domizio J, Voo KS, Friedrich HC, Chamilos G, Ganguly D, Conrad C, Gregorio J, Le Roy D, Roger T, Ladbury JE, Homey B, Watowich S, Modlin RL, Kontoyiannis DP, Liu YJ, Arold ST, Gilliet M (2015) T (H) 17 cells promote microbial killing and innate immune sensing of DNA via interleukin. Nat Immunol 16(9):970–979CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tyumen State UniversityTyumenRussian Federation
  2. 2.Institute of Cellular and Intracellular Symbiosis, RASOrenburgRussian Federation
  3. 3.Federal Research Centre of Biological Systems and Agro-technologies, RASOrenburgRussia
  4. 4.Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, RASMoscowRussian Federation
  5. 5.Gause Institute of New AntibioticsMoscowRussian Federation

Personalised recommendations