Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 3, pp 748–764 | Cite as

Isolation of Yeasts from Guajillo Pepper (Capsicum annuum L.) Fermentation and Study of Some Probiotic Characteristics

  • C. E. Lara-Hidalgo
  • L. Dorantes-ÁlvarezEmail author
  • H. Hernández-Sánchez
  • F. Santoyo-Tepole
  • A. Martínez-Torres
  • L. Villa-Tanaca
  • C. Hernández-Rodríguez
Article

Abstract

Three yeast strains were isolated from the spontaneous fermentation of guajillo pepper: Hanseniaspora opuntiae, Pichia kudriavzevii, and Wickerhamomyces anomalus, which were identified by amplification of the ITS/5.8S ribosomal DNA. Some probiotic characteristics of these strains were evaluated and compared with one commercial probiotic yeast (Saccharomyces boulardii). The survival percentage of all the yeasts was similar to that of the commercial product. They showed different hydrophobicity characteristics with hydrocarbons, autoaggregation > 90%, and characteristics of co-aggregation with pathogenic microorganisms. The adhesion capacity to mucin of the three yeast samples was similar to the reference yeast. The antioxidant activity of the yeasts varied between 155 and 178 μM Trolox equivalents. All exhibited cholesterol reduction capacity, and W. anomalus was able to decrease up to 83% of cholesterol after 48 h of incubation. The 7.5-fold concentrated H. opuntiae supernatant had antimicrobial activity against Salmonella enterica ser. Typhimurium ATCC 14028 and Candida albicans ENCBDM2; tests suggest this activity against S. Typhimurium is due to a proteinaceous metabolite with a weight between 10 and 30 kDa. Among the yeasts, P. kudriavzevii exhibited the highest protective effect on the viability of Lactobacillus casei Shirota in gastric and intestinal conditions. These results suggest that yeasts isolated from guajillo pepper may have a probiotic potential.

Keywords

Probiotic potential Gastro-intestinal condition tolerance Yeasts Guajillo pepper fermentation Lactobacillus casei Shirota Cholesterol reduction 

Notes

Acknowledgments

Lara-Hidalgo wishes to thank CONACyT and PIFI-Instituto Politécnico Nacional for fellowships. We are grateful for the support provided by the Central de Instrumentación de Microscopía and Centro de Nanociencias y Micro y Nanotecnologías, both of the IPN. This work was supported by IPN grants SIP 20181349 and 20171016.

References

  1. 1.
    Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589CrossRefGoogle Scholar
  2. 2.
    DuPont AW, DuPont HL (2011) The intestinal microbiota and chronic disorders of the gut. Nat Rev Gastroenterol Hepatol 8:523–531CrossRefGoogle Scholar
  3. 3.
    Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Investig 121:2126–2132CrossRefGoogle Scholar
  4. 4.
    Rea K, Dinan TG, Cryan JF (2016) The microbiome: a key regulator of stress and neuroinflammation. Neurobiol Stress 4:23–33CrossRefGoogle Scholar
  5. 5.
    Douglas LC, Sanders ME (2008) Probiotics and prebiotics in dietetics practice. J Am Diet Assoc 108(3):510–521CrossRefGoogle Scholar
  6. 6.
    Langdon A, Crook N, Dantas G (2016) The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8:39CrossRefGoogle Scholar
  7. 7.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in foods. FAO/WHO, LondonGoogle Scholar
  8. 8.
    Czerucka D, Piche T, Rampal P (2007) Review article: yeast as probiotics—Saccharomyces boulardii. Aliment Pharmacol Ther 26(6):767–778CrossRefGoogle Scholar
  9. 9.
    Diosma G, Romanin DE, Rey-Burusco MF, Londero A, Garrote GL (2014) Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J Microbiol Biotechnol 30:43–53CrossRefGoogle Scholar
  10. 10.
    Lohith K, Appaiah KAA (2014) In vitro probiotic characterization of yeasts of good and environmental origin. Int J of Probiotics and Prebiotics 9(3):87–92Google Scholar
  11. 11.
    Syal P, Vohra A (2013) Probiotic potential of yeasts isolated from traditional Indian fermented foods. Int J Microbiol Res 5(2):390–398CrossRefGoogle Scholar
  12. 12.
    França R, Conceição F, Mendonça M, Haubert L, Sabadin G, Díaz de Oliveira P, Amaral MG, da Silva WP, Moreira AN (2015) Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 99:7953–7961CrossRefGoogle Scholar
  13. 13.
    Živković M, Čadež N, Uroić K, Miljković M, Tolinački M, Doušova P et al (2015) Evaluation of probiotic potential of yeasts isolated from traditional cheeses manufactured in Serbia and Croatia. J of Intercult Ethnopharmacol 4:1–12CrossRefGoogle Scholar
  14. 14.
    Lim PL, Toh M, Liu SQ (2015) Saccharomyces cerevisiae EC-1118 enhances the survivability of probiotic Lactobacillus rhamnosus HN001 in an acidic environment. Appl Microbiol Biotechnol 99:6803–6811CrossRefGoogle Scholar
  15. 15.
    Liu S, Tsao M (2010) Enhancing stability of lactic acid bacteria and probiotics by Williopsis saturnus var. saturnus in fermented milks. Nutr Food Sci 40:314–322CrossRefGoogle Scholar
  16. 16.
    Mokhtari S, Jafari S, Khomeiri M, Maghsoudlou Y, Ghorbani M (2017) The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Res Int 96:19–26CrossRefGoogle Scholar
  17. 17.
    Mokhtari S, Khomeri M, Jafari S, Mahghsoudlou Y, Ghorbani M (2017) Descriptive analysis of bacterial profile, physicochemical and sensory characteristics of grape juice containing Saccharomyces cerevisiae cell wall-coated probiotic microcapsules during storage. Int J Food Sci Technol 52(4):1042–1048CrossRefGoogle Scholar
  18. 18.
    Collera-Zúñiga O, García-Jiménez F, Meléndez-Gordillo R (2005) Comparative study of carotenoid composition in three Mexican varieties of Capsicum annuum L. Food Chem 90:109–114CrossRefGoogle Scholar
  19. 19.
    Dorantes L, Colmenero R, Hernández H, Mota L, Jaramillo ME, Fernández E, Solano C (2000) Inhibition of growth of some foodborne pathogenic bacteria by Capsicum annum extracts. Int J Food Microbiol 57:125–128CrossRefGoogle Scholar
  20. 20.
    Martínez-Arámburu D, González-Quijano GK, Dorantes-Álvarez L, Aparicio-Ozores G, López-Villegas EO (2015) Changes in microstructure of Salmonella Typhimurium and Listeria monocytogenes exposed to hydroxycinnamic salts. Rev Mex de Ing Quím 14:347–354Google Scholar
  21. 21.
    González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, Perea-Flores MJ, Vera-Ponce de León A, Hernández-Rodríguez C (2014) Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. J Food Sci 79(8):M1545–M1553CrossRefGoogle Scholar
  22. 22.
    Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428CrossRefGoogle Scholar
  23. 23.
    Del Mónaco SM, Barda NB, Rubio NC, Caballero AC (2014) Selection and characterization of a Patagonian Pichia kudriavzevii for wine deacidification. J Appl Microbiol 117:451–464CrossRefGoogle Scholar
  24. 24.
    Charles S. Hoffman, Fred Winston, (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57 (2-3):267–272Google Scholar
  25. 25.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  26. 26.
    Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224CrossRefGoogle Scholar
  27. 27.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  28. 28.
    Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772CrossRefGoogle Scholar
  29. 29.
    Zwietering M, Jongenburger I, Rombouts FM, van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56:1875–1881Google Scholar
  30. 30.
    Zhou T, Li B, Peng C, Ji BP, Chen G, Ren YL (2009) Assessment of the sequential simulated gastrointestinal tolerance of lactic acid bacteria from kefir grains by response surface methodology. J Food Sci 74:328–334CrossRefGoogle Scholar
  31. 31.
    Xie N, Zhou T, Li B (2012) Kefir yeasts enhance probiotic potentials of Lactobacillus paracasei H9: the positive effects of coaggregation between the two strains. Food Res Int 45:394–401CrossRefGoogle Scholar
  32. 32.
    Castro-Rodríguez D, Hernández-Sánchez H, Yáñez FJ (2015) Probiotic properties of Leuconostoc mesenteroides isolated from aguamiel of Agave salmiana. Probiotics Antimicrob Proteins 7:107–117CrossRefGoogle Scholar
  33. 33.
    Abdulla A, Abed TA, Saeed M (2014) Adhesion, autoaggregation and hydrophobicity of six Lactobacillus strains. Br Microbiol Res J 4:381–393CrossRefGoogle Scholar
  34. 34.
    Sahoo TK, Jena PK, Nagar N, Patel AK, Seshadri S (2015) In vitro evaluation of probiotic properties of lactic acid bacteria from the gut of Labeo rohita and Catla catla. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-015-9184-8
  35. 35.
    De Bernardis F, Chiani P, Ciccozzi M, Pellegrini G, Ceddia T, D’Offizzi G, Quinti I, Sullivan P, Cassone A (1996) Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun 64(2):466–471Google Scholar
  36. 36.
    Ombrella A, Racca L, Ramos L (2008) Actividades proteinasa y fosfolipasa de aislamientos de Candida albicans provenientes de secreciones vaginales con distintos valores de pH. Rev Iberoam Micol 25:12–16CrossRefGoogle Scholar
  37. 37.
    Al-Seraih A, Flahaut C, Krier CB, Drider D (2015) Characterization of Candida famata isolated from poultry feces for possible probiotic applications. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-015-9201-y
  38. 38.
    Azevedo AC, Bizerra FC, da Matta DA, de Almeida L, Rosas R, Colombo AL (2011) In vitro susceptibility of a large collection of Candida strains against fluconazole and voriconazole by using the CLSI disk diffusion assay. Mycopatologia 171(6):411–416CrossRefGoogle Scholar
  39. 39.
    Gil-Rodríguez A, Carrascosa A, Requena T (2015) Yeasts in foods and beverages: in vitro characterisation of probiotic traits. LWT-Food Sci Technol.  https://doi.org/10.1016/j.lwt.2015.07.042
  40. 40.
    Sánchez-Machado DI, López-Hernández J, Paseiro-Losada P, López-Cervantes J (2004) An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatogr 18:183–190CrossRefGoogle Scholar
  41. 41.
    Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186CrossRefGoogle Scholar
  42. 42.
    Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozes N (2008) Microbial population dynamics during the processing of Arbequina table olives. Food Res Int 7:738–744CrossRefGoogle Scholar
  43. 43.
    Ongol MP, Asano K (2009) Main microorganisms involved in the fermentation of Ugandan ghee. Int J Food Microbiol 133:286–291CrossRefGoogle Scholar
  44. 44.
    Chanprasartsuk O, Prakitchaiwattana C, Sanguandeekul R (2013) Comparison of methods for identification of yeasts isolated during spontaneous fermentation of freshly crushed pineapple juices. J Agric Sci Technol 15:1479–1490Google Scholar
  45. 45.
    Hernández A, Martín A, Aranda E, Pérez-Nevado F, Córdoba MG (2007) Identification and characterization of yeast isolated from the elaboration of seasoned green table olives. Food Microbiol 24:346–351CrossRefGoogle Scholar
  46. 46.
    Nyanga LK, Nout MJR, Gadaga TH, Theelen B, Boekhout T, Zwietering MH (2007) Yeasts and lactic acid bacteria microbiota from masau (Ziziphus mauritiana) fruits and their fermented fruit pulp in Zimbabwe. Int J Food Microbiol 120:159–166CrossRefGoogle Scholar
  47. 47.
    Papalexandratou Z, De Vuyst L (2011) Assessment of the yeast species diversity of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 11:564–574CrossRefGoogle Scholar
  48. 48.
    Arana-Sánchez A, Segura-García LE, Kirchmayr M, Orozco-Ávila I, Lugo-Cervantes E, Gshchaedler-Mathis A (2015) Identification of predominant yeasts associated with artisan Mexican cocoa fermentations using culture-dependent and culture-independent approaches. World J Microbiol Biotechnol 31:359–369CrossRefGoogle Scholar
  49. 49.
    Ruíz-Moyano S, Martín A, Villalobos MC, Calle A, Serradilla MJ, Cordoba MG, Hernández A (2016) Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Food Microbiol 57:45–53CrossRefGoogle Scholar
  50. 50.
    Karakitsos D, Karabinis A (2008) Hypothermia therapy after traumatic brain injury in children. New Engl J Med 359:1179–1180Google Scholar
  51. 51.
    Boyle R, Robins-Browne TM (2006) Probiotic use in clinical practice: what are the risks? Am J Clin Nutr 83:1256–1264CrossRefGoogle Scholar
  52. 52.
    Todorov SD, Botes M, Guigas C, Schillinger U, Wiid I, Wachsman MB, Holzapfel WH, Dicks LMT (2008) Boza, a natural source of probiotic lactic acid bacteria. J Appl Microbiol 104:465–477Google Scholar
  53. 53.
    Kaczorek E, Chrzanowski L, Pijanowska A, Olszanowski A (2008) Yeast and bacteria cell hydrophobicity and hydrocarbon biodegradation in the presence of natural surfactants: rhamnolipids and saponins. Bioresour Technol 99:4285–4291CrossRefGoogle Scholar
  54. 54.
    Boris S, Suárez JE, Vázquez F, Barbés C (1998) Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infect Immun 66:1985–1989Google Scholar
  55. 55.
    Gómez-Zavaglia A, Kociubinsky G, Pérez P, Disalvo E, De Antoni GL (2002) Effect of bile on the lipid composition and surface properties of bifidobacteria. J Appl Microbiol 93:794–799CrossRefGoogle Scholar
  56. 56.
    Ouwehand AC, Kirjavainen PV, Grönlund MM, Isolauri E, Salminen SJ (1999) Adhesion of probiotic microorganisms to intestinal mucus. Int Dairy J 9:623–630CrossRefGoogle Scholar
  57. 57.
    Ehrmann MA, Kurzak P, Bauer J, Vogel RF (2002) Characterization of lactobacilli towards their use as probiotic adjuncts in poultry. J Appl Microbiol 92:966–975CrossRefGoogle Scholar
  58. 58.
    Martins FS, Silva AA, Vleira AT, Barbosa F, Arantes R, Teiseira M, Nicoli JR (2009) Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties. Arch of Microbiol 191:623–630CrossRefGoogle Scholar
  59. 59.
    Vinderola CG, Medici M, Perdigón G (2004) Relationship between interaction sites in the gut, hydrophobicity, mucosal immunomodulating capacities and cell wall protein prowles in indigenous and exogenous bacteria. J Appl Microbiol 96:230–243CrossRefGoogle Scholar
  60. 60.
    McGinnis M (2004) Pathogenesis of indoor fungal diseases. Med Mycol 42:107–117CrossRefGoogle Scholar
  61. 61.
    FAO/WHO (2002) Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization, London, Ontario, CanadaGoogle Scholar
  62. 62.
    Singleton D, Fidel P Jr, Wozniak K, Hazen K (2005) Contribution of cell surface hydrophobicity protein 1 (Csh1p) to virulence of hydrophobic Candida albicans serotype A cells. FEMS Microbiol Lett 244:373–377CrossRefGoogle Scholar
  63. 63.
    Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 119:797–808CrossRefGoogle Scholar
  64. 64.
    Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host–microbe interactions. Cell Host Microbe 5:580–592CrossRefGoogle Scholar
  65. 65.
    Srikanth C, McCormick BA (2008) Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosstalk. Interdiscip Perspect Infect Dis 2008:626827CrossRefGoogle Scholar
  66. 66.
    Noah TK, Donahue B, Shroyer NF (2011) Intestinal development and differentiation. Exp Cell Res 317:2702–2710CrossRefGoogle Scholar
  67. 67.
    Sánchez B, Bressollier P, Chaignepain S, Schmitter JHM, Urdaci M (2009) Identification of surface-associated proteins in the probiotic bacterium Lactobacillus rhamnosus GG. Int Dairy J 19:85–88CrossRefGoogle Scholar
  68. 68.
    Melgar-Lalalne G, Rivera-Espinosa Y, Reyes AI, Hernández-Sánchez H (2013) In vitro evaluation of the probiotic potential of halotolerant lactobacilli isolated from a ripened tropical mexican cheese. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-013-9144-0
  69. 69.
    Kumamoto CA, Vinces MD (2005) Alternative Candida albicans lifestyle: growth on surfaces. Annu Rev Microbial 58:113–133CrossRefGoogle Scholar
  70. 70.
    Abbas CA (2006) Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In: Querol A, Fleet GH (eds) The yeast handbook: yeasts in food and beverages. Springer. Berlin, Heidelberg, pp 285–334CrossRefGoogle Scholar
  71. 71.
    Ibrahim S, Mahmoud G, Asker M (2012) Production and biological evaluation of exopolysaccharide from isolated Rhodotorula glutinins. Aust J Basic Appl Sci 6:401–408Google Scholar
  72. 72.
    Keceli T, Erginkaya Z, Turkkan E (2013) Antioxidant and antibacterial effects of carotenoids extracted from Rhodotorula glutinis strains. Asian J Chem 25:42–46CrossRefGoogle Scholar
  73. 73.
    Kawagishi H, Finkel T (2014) Unraveling the truth about antioxidants: ROS and disease: finding the right balance. Nat Med 20:711–713CrossRefGoogle Scholar
  74. 74.
    Chen LS, Ma Y, Maubois JL, Heng SH, Chen LJ, Li HM (2010) Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Sci Technol 90(5):537–548CrossRefGoogle Scholar
  75. 75.
    Liong M, Shah N (2005) Bile salt deconjugation ability, bile salt hydrolase activity and cholesterol co-precipitation ability of lactobacilli strains. Int Dairy J 15:391–398CrossRefGoogle Scholar
  76. 76.
    Manson JE, Tosteson H, Ridker PM, Satterfield S, Hebert P, O’Connor GT, Buring JE, Hennekens CH (1992) The primary prevention of myocardial infarction. New Engl J Med 326:1406–1416CrossRefGoogle Scholar
  77. 77.
    Marquina D, Santos A, Peinado JM (2002) Biology of killer yeasts. Int Microbiol 5:65–71CrossRefGoogle Scholar
  78. 78.
    Golubev WI (2006) Antagonistic interactions among yeasts. In: Péter G, Rosa C (eds) Biodiversity and ecophysiology of yeasts, the yeast handbook. Springer, Berlin Heidelberg, pp 197–219CrossRefGoogle Scholar
  79. 79.
    Viljoen BC (2006) Yeast ecological interactions. Yeast–yeast, yeast–bacteria, yeast fungi interactions and yeasts as biocontrol agents. In: Querol A, Fleet H (eds) Yeasts in food and beverages. Springer-Verlag, Berlin Heidelberg, pp 83–110CrossRefGoogle Scholar
  80. 80.
    Bajaj BK, Raina S, Singh S (2013) Killer toxin from a novel killer yeast P. kudriavzevii RY55 with idiosyncratic antibacterial activity. J Basic Microbiol 52:1–11Google Scholar
  81. 81.
    Hatoum R, Labrie S, Fliss I (2013) Identification and partial characterization of antilisterial compounds produced by dairy yeasts. Probiotics Antimicrob Proteins 5(1):8–17CrossRefGoogle Scholar
  82. 82.
    Seddik HA, Ceugniez A, Bendali F, Cudennec B, Drider D (2016) Yeasts isolated from Algerian infants’s feces revealed a burden or Candida albicans species, non-albicans Candida species and Saccharomyces cerevisiae. Arch Microbiol 198:71–81CrossRefGoogle Scholar
  83. 83.
    Radler F, Schmit MJ, Meyer B (1990) Killer toxin of Hanseniaspora uvarum. Arch Microbiol 154:175–178CrossRefGoogle Scholar
  84. 84.
    Ceugniez A, Coucheney F, Jacques P, Daube G, Delcenserie V, Drider D (2017) Anti-Salmonella activity and probiotic trends of Kluyveromyces marxianus S-2-05 and Kluyveromyces lactis S-3-05 isolated from a French cheese, Tomme d’Orchies. Res Microbiol 168(6):575–582CrossRefGoogle Scholar
  85. 85.
    Chae MS, Schraft H, Truelstrup HL, Mackereth R (2006) Effects of physicochemical surface characteristics of Listeria monocytogenes strains on attachment to glass. Food Microbiol 23:250–259CrossRefGoogle Scholar
  86. 86.
    Giotis ES, Blair IS, McDowell DA (2007) Morphological changes in Listeria monocytogenes subjected to sublethal alkaline stress. Int J of Food Microbiol 120:250–258CrossRefGoogle Scholar
  87. 87.
    Cotter PD, Hill C (2003) Surviving the acid test: responses of Gram-positive bacteria to low pH. Microbiol Mol Biol Rev 67:429–453CrossRefGoogle Scholar
  88. 88.
    Hirayama S, Furukawa S, Ogihara H, Morinaga Y (2012) Yeast mannan structure necessary for co-aggregation with Lactobacillus plantarum ML11-11. Biochem Biophys Res Commun 419:652–655CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias BiológicasInstituto Politécnico Nacional, Unidad Profesional López MateosCiudad de MéxicoMexico
  2. 2.Departamento de Investigación, Central de Instrumentación de Espectroscopía, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico
  3. 3.Departamento de Microbiología, Escuela Nacional de Ciencias BiológicasInstituto Politécnico NacionalCiudad de MéxicoMexico

Personalised recommendations