Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 239–247 | Cite as

Protective Efficacy of a Pseudoalteromonas Strain in European Abalone, Haliotis tuberculata, Infected with Vibrio harveyi ORM4

  • Clément Offret
  • Vincent Rochard
  • Hélène Laguerre
  • Jérôme Mounier
  • Sylvain Huchette
  • Benjamin Brillet
  • Patrick Le Chevalier
  • Yannick FleuryEmail author
Article

Abstract

The hemolymph of healthy marine invertebrates is known to harbor antibiotic-producing bacteria belonging to the genus Pseudoalteromonas. Such strains are potential probiotics to control infectious diseases in aquaculture. In the present study, we screened a collection of Pseudoalteromonas strains isolated from the hemolymph of oyster and mussel for antimicrobial activity against Vibrio harveyi, a pathogenic species responsible for high mortality in abalone. Subsequently, the protective efficacy of the most active strain named hCg-6 was investigated in abalone culture faced with a Vibrio harveyi ORM4 infection. First, we have controlled the Pseudoalteromonas hCg-6 safety for abalone health. To that end, animals were immersed for 4 h in Pseudoalteromonas hCg-6 suspensions in seawater. The abalone viability was monitored and Pseudoalteromonas hCg-6 was tracked by quantitative-PCR in abalone hemolymph. After immersion, no abalone death occurred while the strain hCg-6 was significantly detected in hemolymph. Therefore, the strain hCg-6 was considered safe for abalone and evaluated for its ability to protect abalone against V. harveyi (injection of 1 × 103Vibrio per animal). A 4-h long immersion of abalone in a seawater suspension of Pseudoalteromonas hCg-6 (1 × 106 CFU mL−1) prior to infection with Vibrio harveyi significantly improved the abalone viability. Indeed, 15 days post infection, the hCg-6 treatment used increased the abalone survival rate from 16% in untreated animals to 40% in treated abalone. We hypothesized that Pseudoalteromonas hCg-6 antibacterial activity increased the hemomicrobiota shielding effect. In conclusion, Pseudoalteromonas hCg-6 is a promising anti-Vibrio strain for abalone culture.

Keywords

Abalone Pseudoalteromonas Probiotics Hemomicrobiota 

Notes

Acknowledgements

Thanks are given to Dr. C. Paillard (CNRS) for the generous gift of Vibrio harveyi ORM4, to Morgane Nédélec and Rémi Bertran for their expert assistance in abalone rearing, to Denis Rousseau for expert advices in qPCR, and to Hervé Bourdon for manuscript corrections.

Funding information

This work was funded by the region Bretagne, France [ExMIM project, ARED 8347 and Haliobiote II project (IMA 2014, no. 14/D1215)]. Clément Offret was supported by a “Quimper-communauté” grant for PhD thesis.

References

  1. 1.
    Chang PH, Kuo ST, Lai SH et al (2005) Herpes-like infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis Aquat Org 65(1):23–27.  https://doi.org/10.3354/dao065023 CrossRefGoogle Scholar
  2. 2.
    Nicolas J-L, Basuyaux O, Mazurie J, Thebault A (2002) Vibrio carchariae, a pathogen of the abalone Haliotis tuberculata. Dis Aquat Org 50(1):35–43.  https://doi.org/10.3354/dao050035 CrossRefGoogle Scholar
  3. 3.
    Raimondi P, Wilson C, Ambrose R et al (2002) Continued declines of black abalone along the coast of California: are mass mortalities related to El Nino events? Mar Ecol Prog Ser 242:143–152.  https://doi.org/10.3354/meps242143 CrossRefGoogle Scholar
  4. 4.
    Travers M-A, Basuyaux O, Le Goïc N et al (2009) Influence of temperature and spawning effort on Haliotis tuberculata mortalities caused by Vibrio harveyi: an example of emerging vibriosis linked to global warming. Glob Chang Biol 15(6):1365–1376.  https://doi.org/10.1111/j.1365-2486.2008.01764.x CrossRefGoogle Scholar
  5. 5.
    Travers M-A, Le Goïc N, Huchette S, Koken M, Paillard C (2008) Summer immune depression associated with increased susceptibility of the European abalone, Haliotis tuberculata to Vibrio harveyi infection. Fish Shellfish Immunol 25(6):800–808.  https://doi.org/10.1016/j.fsi.2008.08.003 CrossRefGoogle Scholar
  6. 6.
    Travers M-A (2008) Interaction de la bactérie Vibrio harveyi avec son hôte, l’ormeau Haliotis tuberculata : approches physiologiques, cellulaires et moléculaires. Université de Bretagne Occidentale, BrestGoogle Scholar
  7. 7.
    Cardinaud M, Barbou A, Capitaine C, Bidault A, Dujon AM, Moraga D, Paillard C (2014) Vibrio harveyi adheres to and penetrates tissues of the European abalone Haliotis tuberculata within the first hours of contact. Appl Environ Microbiol 80(20):6328–6333.  https://doi.org/10.1128/AEM.01036-14 CrossRefGoogle Scholar
  8. 8.
    Hooper C, Day R, Slocombe R, Handlinger J, Benkendorff K (2007) Stress and immune responses in abalone: limitations in current knowledge and investigative methods based on other models. Fish Shellfish Immunol 22(4):363–379.  https://doi.org/10.1016/j.fsi.2006.06.009 CrossRefGoogle Scholar
  9. 9.
    Antunes F, Hinzmann M, Lopes-Lima M, Machado J, Martins da Costa P (2010) Association between environmental microbiota and indigenous bacteria found in hemolymph, extrapallial fluid and mucus of Anodonta cygnea (Linnaeus, 1758). Microb Ecol 60(2):304–309.  https://doi.org/10.1007/s00248-010-9649-y CrossRefGoogle Scholar
  10. 10.
    Costa RA, Araújo RL, dos Fernandes Vieira RHS (2013) Enzymatic activity of vibrios isolated from the hemolymph of cultured Litopenaeus vannamei shrimp. J Verbr Lebensm 8(4):307–311.  https://doi.org/10.1007/s00003-013-0841-0 CrossRefGoogle Scholar
  11. 11.
    Defer D, Desriac F, Henry J, Bourgougnon N, Baudy-Floc’h M, Brillet B, Le Chevalier P, Fleury Y (2013) Antimicrobial peptides in oyster hemolymph: the bacterial connection. Fish Shellfish Immunol 34(6):1439–1447.  https://doi.org/10.1016/j.fsi.2013.03.357 CrossRefGoogle Scholar
  12. 12.
    Givens CE, Burnett KG, Burnett LE, Hollibaugh JT (2013) Microbial communities of the carapace, gut, and hemolymph of the Atlantic blue crab, Callinectes sapidus. Mar Biol 160(11):2841–2851.  https://doi.org/10.1007/s00227-013-2275-8 CrossRefGoogle Scholar
  13. 13.
    Quinn RA, Smolowitz R, Chistoserdov AY (2013) Culture-independent analysis of bacterial communities in hemolymph of American lobsters with epizootic shell disease. Dis Aquat Org 103(2):141–148.  https://doi.org/10.3354/dao02565 CrossRefGoogle Scholar
  14. 14.
    Desriac F, Le Chevalier P, Brillet B, Leguerinel I, Thuillier B, Paillard C, Fleury Y (2014) Exploring the hologenome concept in marine bivalvia: haemolymph microbiota as a pertinent source of probiotics for aquaculture. FEMS Microbiol Lett 350(1):107–116.  https://doi.org/10.1111/1574-6968.12308 CrossRefGoogle Scholar
  15. 15.
    Lokmer A, Wegner KM (2014) Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J 9(3):670–682.  https://doi.org/10.1038/ismej.2014.160 CrossRefGoogle Scholar
  16. 16.
    Romalde JL, Dieguez AL, Lasa A, Balboa S (2014) New Vibrio species associated to molluscan microbiota: a review. Front Microbiol 4:413.  https://doi.org/10.3389/fmicb.2013.00413 CrossRefGoogle Scholar
  17. 17.
    Wendling CC, Batista FM, Wegner KM (2014) Persistence, seasonal dynamics and pathogenic potential of vibrio communities from Pacific oyster hemolymph. PLoS One 9(4):e94256.  https://doi.org/10.1371/journal.pone.0094256 CrossRefGoogle Scholar
  18. 18.
    Wang X-W, Wang J-X (2015) Crustacean hemolymph microbiota: Endemic, tightly controlled, and utilization expectable. Mol Immunol 68(2):404–411.  https://doi.org/10.1016/j.molimm.2015.06.01810.1007/s12602-018-9389-8
  19. 19.
    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735.  https://doi.org/10.1111/j.1574-6976.2008.00123.x CrossRefGoogle Scholar
  20. 20.
    Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework. Environ Microbiol 11(12):2959–2962.  https://doi.org/10.1111/j.1462-2920.2009.01995.x CrossRefGoogle Scholar
  21. 21.
    Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7(2):e01395–e01315.  https://doi.org/10.1128/mBio.01395-15 CrossRefGoogle Scholar
  22. 22.
    Theis KR, Dheilly NM, Klassen JL, Brucker RM, Baines JF, Bosch TCG, Cryan JF, Gilbert SF, Goodnight CJ, Lloyd EA, Sapp J, Vandenkoornhuyse P, Zilber-Rosenberg I, Rosenberg E, Bordenstein SR (2016) Getting the hologenome concept right: an eco-evolutionary framework for hosts and their microbiomes. mSystems 1(2):e00028–e00016.  https://doi.org/10.1128/mSystems.00028-16 CrossRefGoogle Scholar
  23. 23.
    Schlosser A, Lipski A, Schmalfuss J, Kugler F, Beckmann G (2008) Oceaniserpentilla haliotis gen. nov., sp. nov., a marine bacterium isolated from haemolymph serum of blacklip abalone. Int J Syst Evol Microbiol 58(9):2122–2125.  https://doi.org/10.1099/ijs.0.65767-0 CrossRefGoogle Scholar
  24. 24.
    Offret C, Desriac F, Le Chevalier P, Mounier J, Jégou C, Fleury Y (2016) Spotlight on antimicrobial metabolites from the marine bacteria pseudoalteromonas:chemodiversity and ecological significance. Mar Drugs 14(7):129.  https://doi.org/10.3390/md14070129 CrossRefGoogle Scholar
  25. 25.
    Bowman JP (2007) Bioactive compound synthetic capacity and ecological significance of marine bacterial genus pseudoalteromonas. Mar Drugs 5(4):220–241.  https://doi.org/10.3390/md504220 CrossRefGoogle Scholar
  26. 26.
    Travers M-A, Meistertzheim A-L, Cardinaud M, Friedman CS, Huchette S, Moraga D, Paillard C (2010) Gene expression patterns of abalone, Haliotis tuberculata, during successive infections by the pathogen Vibrio harveyi. J Invertebr Pathol 105(3):289–297.  https://doi.org/10.1016/j.jip.2010.08.001 CrossRefGoogle Scholar
  27. 27.
    Amend DF (1981) Potency testing of fish vaccines. Fish Biol Serodiagn Vaccines 49:447–454Google Scholar
  28. 28.
    Vaseeharan B, Ramasamy P (2003) Control of pathogenic Vibrio spp. by Bacillus subtilis BT23, a possible probiotic treatment for black tiger shrimp Penaeus monodon. Lett Appl Microbiol 36(2):83–87.  https://doi.org/10.1046/j.1472-765X.2003.01255.x CrossRefGoogle Scholar
  29. 29.
    Lim HJ, Kapareiko D, Schott EJ, Hanif A, Wikfors GH (2011) Isolation and evaluation of new probiotic bacteria for use in shellfish hatcheries: I. Isolation and screening for bioactivity. J Shellfish Res 30(3):609–615.  https://doi.org/10.2983/035.030.0303 CrossRefGoogle Scholar
  30. 30.
    Karim M, Zhao W, Rowley D, Nelson D, Gomez-Chiarri M (2013) Probiotic strains for shellfish aquaculture: protection of eastern oyster, Crassostrea virginica, larvae and juveniles against bacterial challenge. J Shellfish Res 32(2):401–408.  https://doi.org/10.2983/035.032.0220 CrossRefGoogle Scholar
  31. 31.
    Olson JB, Thacker RW, Gochfeld DJ (2014) Molecular community profiling reveals impacts of time, space, and disease status on the bacterial community associated with the Caribbean sponge Aplysina cauliformis. FEMS Microbiol Ecol 87(1):268–279.  https://doi.org/10.1111/1574-6941.12222 CrossRefGoogle Scholar
  32. 32.
    Nunes-Alves C (2015) Symbiosis: Vibrio genes involved in squid colonization. Nat Rev Microbiol 13(1):3–3.  https://doi.org/10.1038/nrmicro3414 Google Scholar
  33. 33.
    Oelschlaeger TA (2010) Mechanisms of probiotic actions—a review. Int J Med Microbiol 300(1):57–62.  https://doi.org/10.1016/j.ijmm.2009.08.005 CrossRefGoogle Scholar
  34. 34.
    Verschuere L, Rombaut G, Sorgeloos P, Verstraete W (2000) Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev 64(4):655–671.  https://doi.org/10.1128/MMBR.64.4.655-671.2000 CrossRefGoogle Scholar
  35. 35.
    Kesarcodi-Watson A, Miner P, Nicolas J-L, Robert R (2012) Protective effect of four potential probiotics against pathogen-challenge of the larvae of three bivalves: Pacific oyster (Crassostrea gigas), flat oyster (Ostrea edulis) and scallop (Pecten maximus). Aquaculture 344–349:29–34.  https://doi.org/10.1016/j.aquaculture.2012.02.029 CrossRefGoogle Scholar
  36. 36.
    Pham D, Ansquer D, Chevalier A, Dauga C, Peyramale A, Wabete N, Labreuche Y (2014) Selection and characterization of potential probiotic bacteria for Litopenaeus stylirostris shrimp hatcheries in New Caledonia. Aquaculture 432:475–482.  https://doi.org/10.1016/j.aquaculture.2014.04.031 CrossRefGoogle Scholar
  37. 37.
    Goulden EF, Hall MR, Pereg LL, Høj L (2012) Identification of an antagonistic probiotic combination protecting ornate spiny lobster ( Panulirus ornatus ) larvae against vibrio owensii infection. PLoS One 7(7):e39667.  https://doi.org/10.1371/journal.pone.0039667 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Clément Offret
    • 1
    • 2
  • Vincent Rochard
    • 1
  • Hélène Laguerre
    • 3
  • Jérôme Mounier
    • 4
  • Sylvain Huchette
    • 5
  • Benjamin Brillet
    • 1
    • 6
  • Patrick Le Chevalier
    • 1
    • 6
  • Yannick Fleury
    • 1
    Email author
  1. 1.EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, IUT QuimperUniversité de BrestQuimperFrance
  2. 2.Food Sciences Department, Pavillon Paul-ComtoisUniversité LavalQuébecCanada
  3. 3.AgroCampus Ouest site de Beg-MeilFouesnantFrance
  4. 4.EA3882 Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IBSAM, ESIAB, Technopole Brest-IroiseUniversité de BrestPlouzanéFrance
  5. 5.France HaliotisPlouguerneauFrance
  6. 6.EA3884 Laboratoire de Biotechnologie et Chimie Marines, Institut Universitaire Européen de la Mer, IUT QuimperUniversité de BrestQuimperFrance

Personalised recommendations