Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 92–102 | Cite as

Characterization and Antibacterial Activity Against Helicobacter pylori of Lactic Acid Bacteria Isolated from Thai Fermented Rice Noodle

  • Sujitra Techo
  • Wonnop Visessanguan
  • Ratha-korn Vilaichone
  • Somboon TanasupawatEmail author
Article

Abstract

A total of 32 lactic acid bacteria (LAB) were isolated from Khanom-jeen, a Thai traditional fermented rice noodle. They belonged to the genus Leuconostoc (Ln), Lactobacillus (Lb), Enterococcus (E), Lactococcus (Lc), and Weissella (W), based on their phenotypic characteristics and 16S rRNA gene sequence analyses. The strains were identified as Ln. pseudomesenteroides (group 1, two strains), Ln. citreum (group 2, three strains), Ln. lactis (group 3, three strains), Lb. paracasei subsp. tolerans (group 4, two strains), E. faecium (group 5, three strains), Lc. lactis subsp. lactis (group 6, one strain), W. confusa (group 7, six strains), Lb. fermentum (group 8, seven strains), and Lb. plantarum subsp. plantarum and Lb. pentosus (group 9, five strains). Fifteen strains exhibited the inhibitory activity against Helicobacter pylori clinical isolates by spot-on-lawn method. Lb. fermentum P43-01 resisted to bile acids showed the broad spectrum of antimicrobial activity against H. pylori strains MS83 and BK364. These antagonistic effects were associated with proteinaceous compounds which are sensitive to α-chymotrypsin and pepsin. Results indicated that production of bacteriocin-like substances of selected strain might be the significant mechanism that exerted the inhibition on H. pylori. A potential strain could be used as probiotics in alternative or adjunctive therapy for a patient suffering from H. pylori infection.

Keywords

Antimicrobial activity Fermented rice noodle Helicobacter pylori Lactic acid bacteria Bacteriocins 

Notes

Funding Information

This study was financially supported by the Thailand Research Fund, Chulalongkorn University, and ASIA STAR TRADE CO., LTD, through the 2015 Research and Researchers for Industries Program (RRI) as a Ph.D. scholarship to S.T., National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand (Grant No. P-17-52209) to W.V., and was partially supported by the Grant for International Research Integration: Research Pyramid, Ratchadaphiseksomphot Endowment Fund (GCURP-58-01-33-01), Chulalongkorn University.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Warren JR, Marshall BJ (1983) Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 321(8336):1273–1275Google Scholar
  2. 2.
    Hamilton-Miller JMT (2003) The role of probiotics in the treatment and prevention of Helicobacter pylori infection. Int J Antimicrob Agents 22(4):360–366.  https://doi.org/10.1016/S0924-8579(03)00153-5 Google Scholar
  3. 3.
    Vale FF, Vítor JMB (2010) Transmission pathway of Helicobacter pylori: does food play a role in rural and urban areas? Int J Food Microbiol 138(1-2):1–12.  https://doi.org/10.1016/j.ijfoodmicro.2010.01.016 Google Scholar
  4. 4.
    Zullo A, Hassan C, Ridola L, De Francesco V, Vaira D (2012) Standard triple and sequential therapies for Helicobacter pylori eradication: an update. Eur J Intern Med 24:16–19Google Scholar
  5. 5.
    Myllyluoma E, Ahlroos T, Veijola L, Rautelin H, Tynkkynen S, Korpela R (2007a) Effects of anti-Helicobacter pylori treatment and probiotic supplementation on intestinal microbiota. Int J Antimicrob Agents 29(1):66–72.  https://doi.org/10.1016/j.ijantimicag.2006.08.034 Google Scholar
  6. 6.
    Michetti P (2001) Lactobacilli for the management of Helicobacter pylori. Nutrition 17(3):268–269.  https://doi.org/10.1016/S0899-9007(00)00475-5 Google Scholar
  7. 7.
    FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Agriculture Organization of the United Nations and World Health Organization Working Group Report, London, Ontario, pp 1–11Google Scholar
  8. 8.
    Servin AL, Coconnier M-H (2003) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17(5):741–754.  https://doi.org/10.1016/S1521-6918(03)00052-0 Google Scholar
  9. 9.
    Saad N, Delattre C, Urdaci M, Schmitter JM, Bressollier P (2013) An overview of the last advances in probiotic and prebiotic field. LWT-Food Sci Technol 50(1):1–16.  https://doi.org/10.1016/j.lwt.2012.05.014 Google Scholar
  10. 10.
    Coconnier M-H, Lievin V, Hemery E, Servin AL (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 64(11):4573–4580Google Scholar
  11. 11.
    Cruchet S, Obregon MC, Salazar G, Diaz E, Gotteland M (2003) Effect of the ingestion of a dietary product containing Lactobacillus johnsonii La1 on Helicobacter pylori colonization in children. Nutrition 19(9):716–721.  https://doi.org/10.1016/S0899-9007(03)00109-6 Google Scholar
  12. 12.
    Sgouras D, Maragkoudakis P, Petraki K, Martinez-Gonzalez B, Eriotou E, Michopoulos S, Kalantzopoulos G, Tsakalidou E, Mentis A (2004) In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl Environ Microbiol 70(1):518–526.  https://doi.org/10.1128/AEM.70.1.518-526.2004 Google Scholar
  13. 13.
    Myllyluoma E, Kajander K, Mikkola H, Kyrönpalo S, Rasmussen M, Kankuri E, Sipponen P, Vapaatalo H, Korpela R (2007b) Probiotic intervention decreases serum gastrin-17 in Helicobacter pylori infection. Dig Liver Dis 39(6):516–523.  https://doi.org/10.1016/j.dld.2007.02.015 Google Scholar
  14. 14.
    Deguchi R, Nakaminami H, Rimbara E, Noguchi N, Sasatsu M, Suzuki T, Matsushima M, Koike J, Igarashi M, Ozawa H, Fukuda R, Takagi A (2012) Effect of pretreatment with Lactobacillus gasseri OLL2716 on first-line Helicobacter pylori eradication therapy. J Gastroenterol Hepatol 27(5):888–892.  https://doi.org/10.1111/j.1440-1746.2011.06985.x Google Scholar
  15. 15.
    Lin W–H, Wu C–R, Fang TJ, Guo J–T, Huang S–Y, Lee M–S, Yang H–L (2011) Anti-Helicobacter pylori activity of fermented milk with lactic acid bacteria. J Sci Food Agric 91(8):1424–1431.  https://doi.org/10.1002/jsfa.4327 Google Scholar
  16. 16.
    El-Adawi H, El-Sheekh M, Khalil M, El-Deeb N, Hussein M (2013) Lactic acid bacterial extracts as anti-Helicobacter pylori: a molecular approach. Ir J Med Sci 182(3):439–452.  https://doi.org/10.1007/s11845-013-0909-y Google Scholar
  17. 17.
    Zendo T, Sonomoto K (2013) Classification and diversity of bacteriocins. In: Sonomoto K, Yokota A (eds) Lactic acid bacteria and bifidobacteria current progress in advanced research, 1st edn. Caister Academic Press, Norfolk, UK, pp 157–164Google Scholar
  18. 18.
    Tsai C-C, Huang L-F, Lin C-C, Tsen H-Y (2004) Antagonistic activity against Helicobacter pylori infection in vitro by a strain of Enterococcus faecium TM39. Int J Food Microbiol 96(1):1–12.  https://doi.org/10.1016/j.ijfoodmicro.2003.10.019 Google Scholar
  19. 19.
    Nam H, Ha M, Bae O, Lee Y (2002) Effect of Weissella confusa strain PL9001 on the adherence and growth of Helicobacter pylori. Appl Environ Microbiol 68(9):4642–4645.  https://doi.org/10.1128/AEM.68.9.4642-4645.2002 Google Scholar
  20. 20.
    Collado MC, González A, González R, Hernández M, Ferrús MA, Sanz Y (2005) Antimicrobial peptides are among the antagonistic metabolites produced by Bifidobacterium against Helicobacter pylori. Int J Antimicrob Agents 25(5):385–391.  https://doi.org/10.1016/j.ijantimicag.2005.01.017 Google Scholar
  21. 21.
    Simova ED, Beshkova DB, Dimitrov ZHP (2009) Characterization and antimicrobial spectrum of bacteriocins produced by lactic acid bacteria isolated from traditional Bulgarian dairy products. J Appl Microbiol 106(2):692–701.  https://doi.org/10.1111/j.1365-2672.2008.04052.x Google Scholar
  22. 22.
    Lim S–M (2014) Anti-Helicobacter pylori activity of antimicrobial substances produced by lactic acid bacteria isolated from Baikkimchi. J Korean Soc Appl Biol Chem 57(5):621−630Google Scholar
  23. 23.
    Tanasupawat S, Komagata K (2001) Lactic acid bacteria in fermented foods in Southeast Asia. In: Nga BH, Tan HM, Suzuki K (eds) Microbial diversity in Asia: technology and prospects. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 43–59.  https://doi.org/10.1142/9789812811820_0002 Google Scholar
  24. 24.
    De Man JC, Rogosa M, Sharpe ME (1960) A medium for the cultivation of lactobacilli. J Appl Bacteriol 23(1):130–135.  https://doi.org/10.1111/j.1365-2672.1960.tb00188.x Google Scholar
  25. 25.
    Tanasupawat S, Okada S, Komagata K (1998) Lactic acid bacteria found in fermented fish in Thailand. J Gen Appl Microbiol 44(3):193–200.  https://doi.org/10.2323/jgam.44.193 Google Scholar
  26. 26.
    Tanasupawat S, Thongsanit J, Okada S, Komagata K (2002) Lactic acid bacteria isolated from soy sauce mash in Thailand. J Gen Appl Microbiol 48(4):201–209.  https://doi.org/10.2323/jgam.48.201 Google Scholar
  27. 27.
    Okada S, Toyoda T, Kozaki M (1978) An easy method for the determination of the optical types of lactic acid produced by lactic acid bacteria. Agric Biol Chem 42(9):1781–1783Google Scholar
  28. 28.
    Kawasaki H, Hoshino Y, Hirata A, Yamasato K (1993) Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria. Arch Microbiol 160(5):358–362Google Scholar
  29. 29.
    Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175Google Scholar
  30. 30.
    Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613-1617.  https://doi.org/10.1099/ijsem.0.001755
  31. 31.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882.  https://doi.org/10.1093/nar/25.24.4876 Google Scholar
  32. 32.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425Google Scholar
  33. 33.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729.  https://doi.org/10.1093/molbev/mst197 Google Scholar
  34. 34.
    Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791.  https://doi.org/10.1111/j.1558-5646.1985.tb00420.x Google Scholar
  35. 35.
    Ennahar S, Asou Y, Zendo T, Sonomoto K, Ishizaki A (2001) Biochemical and genetic evidence for production of enterocins A and B by Enterococcus faecium WHE 81. Int J Food Microbiol 70(3):291–301.  https://doi.org/10.1016/S0168-1605(01)00565-7 Google Scholar
  36. 36.
    Makete G, Aiyegoro OA, Thantsha MS (2017) Isolation, identification and screening of potential probiotic bacteria in milk from South African Saanen goats. Probiotics Antimicrob Proteins 9(3):246–254.  https://doi.org/10.1007/s12602-016-9247-5 Google Scholar
  37. 37.
    Thamacharoensuk T, Thongchul N, Taweechotipatr M, Tolieng V, Kodama K, Tanasupawat S (2013) Screening and characterization of lactic acid bacteria from animal faeces for probiotic properties. Thai J Vet Med 43(4):541–551Google Scholar
  38. 38.
    Axelsson L (2004) Lactic acid bacteria: classification and physiology. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 1–66.  https://doi.org/10.1201/9780824752033.ch1 Google Scholar
  39. 39.
    Holzapfel WH, Björkroth J, Dicks LMT (2009) Genus Leuconostoc. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 624–635Google Scholar
  40. 40.
    Hammes WP, Hertel C (2009) Genus Lactobacillus. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 464–511Google Scholar
  41. 41.
    Švec P, Devriese LA (2009) Genus Enterococcus. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 594–607Google Scholar
  42. 42.
    Teuber M (2009) Genus Lactococcus. In: de Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 711–722Google Scholar
  43. 43.
    Björkroth J, Dicks LMT, Holzapfel WH (2009) Genus Weissella. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, Schleifer K-H, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol 3, 2nd edn. Springer, New York, pp 643–654Google Scholar
  44. 44.
    Kaur B, Kaur G (2016) Amelioration of Helicobacter pylori-induced PUD by probiotic lactic acid bacteria. In: Watson RR, Preedy VR (eds) Probiotics, prebiotics and synbiotics: bioactive food in health promotion, 1st edn. Elsevier, San Diego, pp 865–895.  https://doi.org/10.1016/B978-0-12-802189-7.00067-8 Google Scholar
  45. 45.
    Canducci F. Cremonini, F. Armuzzi, A. Di Caro, S. Gabrielli M, Santarelli L, Nista E, Lupascu A, De Martini D, Gasbarrini A (2002) Probiotics and Helicobacter pylori eradication. Digest Liver Dis 34 (Supp1.): SB1–3, S81, S83, DOI:  https://doi.org/10.1016/S1590-8658(02)80172-4
  46. 46.
    Ouwehand AC, Vesterlund S (2004) Antimicrobial components from lactic acid bacteria. In: Salminen S, von Wright A, Ouwehand AC (eds) Lactic acid bacteria: microbiological and functional aspects, 3rd edn. Marcel Dekker, New York, pp 375–396.  https://doi.org/10.1201/9780824752033.ch11 Google Scholar
  47. 47.
    Lim E–S (2015) Purification and characterization of two bacteriocins from Lactobacillus brevis BK11 and Enterococcus faecalis BK61 showing anti-Helicobacter pylori activity. J Korean Soc Appl Biol Chem 58(5):703–714.  https://doi.org/10.1007/s13765-015-0094-y Google Scholar
  48. 48.
    Kim TS, Hur JW, Yu MA, Cheigh CI, Kim KN, Hwang JK, Pyun YR (2003) Antagonism of Helicobacter pylori by bacteriocins of lactic acid bacteria. J Food Prot 66(1):3–12.  https://doi.org/10.4315/0362-028X-66.1.3 Google Scholar
  49. 49.
    Dunne C, O’Mahony L, Murphy L, Thornton G, Morrissey D, O’Halloran S, Feeney M, Flynn S, Fitzgerald G, Daly C, Kiely B, O’Sullivan GC, Shanahan F, Collins JK (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73(suppl):386S–392SGoogle Scholar
  50. 50.
    Archer AC, Halami PM (2015) Probiotic attributes of Lactobacillus fermentum isolated from human feces and dairy products. Appl Microbiol Biotechnol 99(19):8113–8123.  https://doi.org/10.1007/s00253-015-6679-x Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sujitra Techo
    • 1
  • Wonnop Visessanguan
    • 2
  • Ratha-korn Vilaichone
    • 3
  • Somboon Tanasupawat
    • 1
    Email author
  1. 1.Department of Biochemistry and Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  2. 2.National Center for Genetic Engineering and Biotechnology (BIOTEC)113 Thailand Science Park, Phahonyothin RoadPathum ThaniThailand
  3. 3.GI Unit, Department of MedicineThammasat University HospitalPathum ThaniThailand

Personalised recommendations