Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 198–206 | Cite as

The Combined Efficiency of Dietary Isomaltooligosaccharides and Bacillus spp. on the Growth, Hemato-Serological, and Intestinal Microbiota Indices of Caspian Brown Trout (Salmo trutta caspius Kessler, 1877)

  • Maryam AftabgardEmail author
  • Alireza Salarzadeh
  • Mahmoud Mohseni
  • Amir Houshang Bahri Shabanipour
  • Mohammad Ebrahim Jalil Zorriehzahra
Article

Abstract

The combined effects of a commercial probiotic, BetaPlus®, and a prebiotic, isomaltooligosaccharides (IMOS) on the growth, survival rate, intestinal microbiota, and hemato-immunological parameters were evaluated in Caspian brown trout (Salmo trutta caspius Kessler, 1877). Caspian brown trout fingerlings (~ 9 g) were fed a control diet (basal diet) or a synbiotic diet (the basal diet + 2 g kg−1 IMOS + 1 g kg−1 BetaPlus®) for 7 weeks. At the end of this trial, fish fed the synbiotic diet showed significant improvements in body weight increase, feed conversion ratio, and survival rate compared with fish fed the control diet (P < 0.05). In addition, fish fed the synbiotic diet had the highest levels of white blood cells, monocytes, and neutrophils (P < 0.05), while the red blood cells, hemoglobin, hematrocrit, mean corpuscular volume, and lymphocytes were significantly higher in the control group (P < 0.05). The serum triglycerides, cholesterol, total protein, albumin, albumin/globulin ratio, and immunoglobulin M levels, as well as alanine aminotransferase and lactate dehydrogenase activities were higher in the synbiotic group than in the control group (P < 0.05). In addition, fish fed the synbiotic diet showed significantly higher gut total viable aerobic bacterial counts and lactic acid bacteria (P < 0.05). The results demonstrated that BetaPlus® in combination with IMOS enhanced the growth, survival rate, intestinal microbiota, and some haemato-immunological parameters in Caspian brown trout fingerlings.

Keywords

Isomaltooligosaccharides BetaPlus® Hemato-immunological Gut microbiota Salmo trutta caspius 

Notes

Acknowledgments

The authors would like to thank M.E. Rastravan, Dr. S. Najjar Lashgari, G.R. Lashtoo Aghaei, and R. Yousefi from the CFRC in Tonekabon, Mazandaran province, Iran, for their cooperation during this research. We would also like to thank the anonymous editor and reviewers for their helpful suggestions for this study.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All institutional and national guidelines for the care and use of laboratory animals were followed.

References

  1. 1.
    Abid A, Davies SJ, Waines P, Emery M, Castex M, Gioacchini G, Carnevali O, Bickerdike R, Romero J, Merrifield DL (2013) Dietary synbiotics application modulates Atlantic salmon (Salmo salar) intestinal microbial communities and intestinal immunity. Fish Shellfish Immunol 35(6):1948–1956CrossRefGoogle Scholar
  2. 2.
    Akrami R, Nasri-Tajan M, Jahedi A, Razeghi Mansour M, Jafarpour SA (2015) Effects of dietary synbiotic on growth, survival, lactobacillus bacterial counts, blood indices and immunity of beluga (Huso huso Linnaeus, 1754) juvenile. Aquac Nutr 21(6):952–959CrossRefGoogle Scholar
  3. 3.
    Amiri Moghaddam J, Abedian-Kenari A, Khodabandeh S (2013) Effects of dietary vegetal fatty acid and fat content on growth and acclimation to Caspian Sea water in Caspian brown trout (Salmo trutta caspius) parr. Aquaculture 412–413:144–150CrossRefGoogle Scholar
  4. 4.
    Bitiren M, Karakılçık AZ, Zerin M, Aksoy N, Musa D (2004) Effects of selenium on histopathological and enzymatic changes in experimental liver injury of rats. Exp Toxicol Pathol 56(1):59–64Google Scholar
  5. 5.
    Borges A, Scotti LV, Siqueira DR, Jurinitz DF, Wassermann GF (2004) Hematologic and serum biochemical values for jundia (Rhamdia quelen). Fish Physiol Biochem 30(1):21–25CrossRefGoogle Scholar
  6. 6.
    Casillas E, Sundquist J, Ames WE (1982) Optimization of assay conditions for, and the selected tissue distribution of, alanine aminotransferase and aspartate aminotransferase of English sole, Parophrys vetulus Girard. J Fish Biol 21(2):197–204CrossRefGoogle Scholar
  7. 7.
    Cerezuela R, Meseguer J, Esteban M (2011) Current knowledge in synbiotic use for fish aquaculture: a review. J Aquac Res Dev S1:008.  https://doi.org/10.4172/2155-9546.S1-008 Google Scholar
  8. 8.
    Cerezuela R, Guardiola FA, Meseguer J, Esteban MA (2012) Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream (Sparus aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish Shellfish Immunol 32(6):1032–1040CrossRefGoogle Scholar
  9. 9.
    Collier HB (1994) The standardization of blood hemoglobin determinations. Can Med Assoc J 50:550–552Google Scholar
  10. 10.
    Demigné C, Morand C, Levrat MA, Besson C, Moundras C, Rémésy C (1995) Effect of propionate on fatty acid and cholesterol synthesis and on acetate metabolism in isolated rat hepatocytes. Br J Nutr 74(2):209–219CrossRefGoogle Scholar
  11. 11.
    Dimitroglou A, Merrifield DL, Carnevali O, Picchietti S, Avella M, Daniels C, Güroy D, Davies SJ (2011) Microbial manipulations to improve fish health and production—a Mediterranean perspective. Fish Shellfish Immunol 30(1):1–16CrossRefGoogle Scholar
  12. 12.
    El-Dakar AY, Shalaby SM, Nemetallah BR, Saleh NE, Sakr EM, Toutou MM (2015) Possibility of using basil (Ocimum basilicum) supplementation in Gilthead sea bream (Sparus aurata) diet. Egypt J Aquat Res 41(2):203–210CrossRefGoogle Scholar
  13. 13.
    Ellis TA (1990) Lysozyme assays. In: Stolen JS, Fletcher TC, Anderson DP, Roberson BS, Van Muiswinkel WB (eds) Techniques in fish immunology. SOS Publications, Fair Haven, pp 101–103Google Scholar
  14. 14.
    Firouzbakhsh F, Mehrabi Z, Heydari M, Khalesi MJ, Tajick AA (2014) Protective effects of a synbiotic against experimental Saprolegnia parasitica infection in rainbow trout (Oncorhynchus mykiss). Aquac Res 45(4):609–618CrossRefGoogle Scholar
  15. 15.
    Gabriel NN, Qiang J, He J, Ma XY, Kpundeh MD, Xu P (2015) Dietary Aloe vera supplementation on growth performance, some haemato-biochemical parameters and disease resistance against Streptococcus iniae in tilapia (GIFT). Fish Shellfish Immunol 44(2):504–514CrossRefGoogle Scholar
  16. 16.
    Geng X, Dong XH, Tan BP, Yang QY, Chi SY, Liu HY, Liu XQ (2011) Effects of dietary chitosan and Bacillus subtilis on the growth performance, non-specific immunity and disease resistance of cobia, Rachycentron canadum. Fish Shellfish Immunol 31(3):400–406CrossRefGoogle Scholar
  17. 17.
    Geraylou Z, Souffreau C, Rurangwa E, De Meester L, Courtin CM, Delcour JA, Buyse J, Ollevier F (2013) Effects of dietary arabinoxylan-oligosaccharides (AXOS) and endogenous probiotics on the growth performance, non-specific immunity and gut microbiota of juvenile Siberian sturgeon (Acipenser baerii). Fish Shellfish Immunol 35(3):766–775CrossRefGoogle Scholar
  18. 18.
    Gibson GR (2004) Fibre and effects on probiotics (the prebiotic concept). Clin Nutr Suppl 1(2):25–31CrossRefGoogle Scholar
  19. 19.
    Giri SS, Sukumaran V, Sen SS, Jena PK (2014) Effects of dietary supplementation of potential probiotic Bacillus subtilis VSG1 singularly or in combination with Lactobacillus plantarum VSG3 or/and Pseudomonas aeruginosa VSG2 on the growth, immunity and disease resistance of Labeo rohita. Aquac Nutr 20(2):163–171CrossRefGoogle Scholar
  20. 20.
    Goffin D, Delzenne N, Blecker C, Hanon E, Deroanne C, Paquot M (2011) Will isomalto-oligosaccharides, a well-established functional food in Asia, break through the European and American market? The status of knowledge on these prebiotics. Crit Rev Food Sci Nutr 51(5):394–409CrossRefGoogle Scholar
  21. 21.
    Hassaan MS, Soltan MA, Ghonemy MMR (2014) Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, haematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). Egypt J Aquat Res 40(2):199–208CrossRefGoogle Scholar
  22. 22.
    Holben WE, Williams P, Saarinen M, Särkilahti LK, Apajalahti JHA (2002) Phylogenetic analysis of intestinal microflora indicates a novel Mycoplasma phylotype in farmed and wild salmon. Microb Ecol 44(2):175–285CrossRefGoogle Scholar
  23. 23.
    Hollmén T, Franson JC, Hario M, Sankari S, Kilpi M, Lindström K (2001) Use of serum biochemistry to evaluate nutritional status and health of incubating common eiders (Somateria mollissima) in Finland. Physiol Biochem Zool 74(3):333–342CrossRefGoogle Scholar
  24. 24.
    Hoseinifar SH, Mirvaghefi A, Amoozegar MA, Merrifield DL, Ringø E (2017) In vitro selection of a synbiotic and in vivo evaluation on intestinal microbiota, performance and physiological response of rainbow trout (Oncorhynchus mykiss) fingerlings. Aquac Nutr 23(1):111–118CrossRefGoogle Scholar
  25. 25.
    Irianto A, Austin B (2002) Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis 25(6):333–342CrossRefGoogle Scholar
  26. 26.
    Jafarzadeh E, Khara H, Ahmadnezhad M (2015) Effects of synbiotic (Biomin IMBO®) on haematological and immunological components of Russian sturgeon, Acipenser guldenstadti. Comp Clin Pathol 24(6):1317–1323CrossRefGoogle Scholar
  27. 27.
    Jenkins F, Smith J, Rajanna B, Shameem U, Umadevi K, Sandhya V, Madhavi R (2003) Effect of sub lethal concentration of endosulfan on haematological and serum biochemical parameters in the carp Cyprinus carpio. Bull Environ Contam Toxicol 70(5):993–997CrossRefGoogle Scholar
  28. 28.
    Kallai L, Hahn A, Röder V, Županić V (1964) Correlation between histological findings and serum transaminase values in chronic diseases of the liver. Acta Med Scand 175(1):49–56CrossRefGoogle Scholar
  29. 29.
    Kaneko T, Yokoyama A, Suzuki M (1995) Digestibility characteristics of isomaltooligosaccharides in comparison with several saccharides using the rat jejunum loop method. Biosci Biotechnol Biochem 59(7):1190–1194CrossRefGoogle Scholar
  30. 30.
    Klinger RC, Blazer VS, Echevarria C (1996) Effect of dietary lipid on the haematology of channel catfish (Ictalurus punctatus). Aquaculture 147(3–4):225–233CrossRefGoogle Scholar
  31. 31.
    Klontz GW (1994) Fish hematology. In: Stolen JS, Fletcher TC, Rowley AF, Kelikoff TC, Kaattari SL, Smith SA (eds) Techniques in fish immunology. SOS Publications, Fair Haven, pp 121–132Google Scholar
  32. 32.
    Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish Shellfish Immunol 24(2):168–172CrossRefGoogle Scholar
  33. 33.
    Kumar S, Sahu NP, Pal AK, Choudhury D, Yengkokpam S, Mukherjee SC (2005) Efffect of dietary carbohydrate on heamatology, respiratory burst activity and histological changes in L. rohita juveniles. Fish Shellfish Immunol 19(4):331–344CrossRefGoogle Scholar
  34. 34.
    Li J, Tan B, Mai K (2009) Dietary probiotic Bacillus OJ and isomaltooligosaccharides influence the intestine microbial populations, immune responses and resistance to white spot syndrome virus in shrimp (Litopenaeus vannamei). Aquaculture 291(1–2):35–40CrossRefGoogle Scholar
  35. 35.
    Lin S, Mao S, Guan Y, Luo L, Lio L, Pan Y (2012) Effects of dietary chitosan oligosaccharides and Bacillus coagulans on the growth innate immunity and resistance of koi (Cyprinus carpio koi). Aquaculture 342–343:36–41CrossRefGoogle Scholar
  36. 36.
    Liu CH, Chiu CH, Wang SW, Cheng W (2012) Dietary administration of the probiotic, Bacillus subtilis E20, enhances the growth, innate immune responses, and disease resistance of the grouper, Epinephelus coioides. Fish Shellfish Immunol 33(4):699–706CrossRefGoogle Scholar
  37. 37.
    Maheswaran R, Devapaul A, Muralidharan S, Velmurugan B, Ignacimuthu S (2008) Haematological studies of freshwater fish, Clarias batrachus (L.) exposed to mercuric chloride. Int J Integr Boil 2(1):49–54Google Scholar
  38. 38.
    Maita M (2007) Fish health assessment. In: Nakagawa H, Sato M, Gatlin DM III (eds) Dietary supplements for the health and quality of cultured fish. CABI Publications, Wallingford, pp 10–34CrossRefGoogle Scholar
  39. 39.
    Maqsood S, Samoon MH, Singh P (2009) Immunomodulatory and growth promoting effect of dietary levamisole in Cyprinus carpio fingerlings against the challenge of Aeromonas hydrophila. Turk J Fish Aquat Sci 9:111–120Google Scholar
  40. 40.
    Martins ML, Tavares-Dias M, Fujimoto RY, Onaka EM, Nomura DT (2004) Haematological alterations of Leporinus macrocephalus (Osteichtyes: Anostomidae) naturally infected by Goezia leporini (Nematoda: Anisakidae) in fish ponds. Arq Bras Med Vet Zootec 56(5):640–646CrossRefGoogle Scholar
  41. 41.
    Mehrabi Z, Firouzbakhsh F, Jafarpour A (2012) Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. Anim Physiol Anim Nutr 96(3):474–481CrossRefGoogle Scholar
  42. 42.
    Misra CK, Das BK, Mukherjee SC, Meher PK (2006) The immunomodulatory effects of tuftsin on the non-specific immune system of Indian Major carp, Labeo rohita. Fish Shellfish Immunol 20(5):728–738CrossRefGoogle Scholar
  43. 43.
    Morelli L, Capurso L (2012) FAO/WHO guidelines on probiotics: 10 years later. J Clin Gastroenterol 46(Suppl):S1–S2CrossRefGoogle Scholar
  44. 44.
    Mouriño JLP, do Nascimento Vieira F, Jatobá AB, da Silva BC, Jesus GFA, Seiffert WQ, Martins ML (2012) Effect of dietary supplementation of inulin and W. cibaria on haemato-immunological parameters of hybrid surubim (Pseudoplatystoma sp). Aquac Nutr 18(1):73–80CrossRefGoogle Scholar
  45. 45.
    Nayak SK (2010) Fish probiotics and immunity: a fish perspective. Fish Shellfish Immunol 29(1):2–14CrossRefGoogle Scholar
  46. 46.
    Nikinmaa M, Soivio A, Nakari T, Lindgren S (1983) Hauling stress in brown trout (Salmo trutta): physiological responses to transport in fresh-water or salt-water, and recovery in natural brackish water. Aquaculture 34(1–2):93–99CrossRefGoogle Scholar
  47. 47.
    Pérez-Jiménez A, Guedes MJ, Morales AE, Oliva-Teles A (2007) Metabolic responses to short starvation and refeeding in Dicentrarchus labrax, effect of dietary composition. Aquaculture 265(1–4):325–335CrossRefGoogle Scholar
  48. 48.
    Rajabipour F, Shahsavani D, Moghimi A, Jamili S, Mashaii N (2010) Comparision of serum enzyme activity in great stugeon, Huso huso, cultured in brackish and fresh water earth ponds in Iran. Comp Clin Pathol 19(3):301–305CrossRefGoogle Scholar
  49. 49.
    Ramezani H (2009) Effects of different protein and energy levels on growth performance of Caspian brown trout, Salmo trutta caspius (Kessler, 1877). J Fish Aquat Sci 4(4):203–209CrossRefGoogle Scholar
  50. 50.
    Reid RT, Livet DH, Faulkner DJ, Butler A (1993) A siderophore from a marine bacterium with an exceptional ferric ion affinity constant. Nature 366:455–458CrossRefGoogle Scholar
  51. 51.
    Reyes-Becerril M, Ascencio F, Garcia-Lopez V, Macias ME, Roa MC, Esteban MA (2014) Single or combined effects of Lactobacillus sakei and inulin on growth, non-specific immunity and IgM expression in leopard grouper (Mycteroperca rosacea). Fish Physiol Biochem 40(4):1169–1180Google Scholar
  52. 52.
    Ringø E, Dimitroglou A, Hoseinifar SH, Davies SJ (2014) Prebiotics in fin fish: an update. In: Merrifield DL, Ringø E (eds) Aquaculture nutrition: gut health. Probiotics and Prebiotics. Wiley-Blackwell scientific Publication, London, pp 360–400Google Scholar
  53. 53.
    Ringø E, Olsen RE, Gifstad TØ, Dalmo RA, Amlund H, Hemre GI, Bakke AM (2010) Prebiotics in aquaculture—a review. Aquac Nutr 16(2):117–136CrossRefGoogle Scholar
  54. 54.
    Ringø E, Song SK (2016) Application of dietary supplements (synbiotics and probiotics in combination with plant products and B-glucans) in aquaculture. Aquac Nutr 22(1):4–24CrossRefGoogle Scholar
  55. 55.
    Saulnier DM, Kolida K, Gibson GR (2009) Microbiology of the human intestinal tract and approaches for its dietary modulation. Curr Pharm Design 15(13):1403–1414CrossRefGoogle Scholar
  56. 56.
    Schley PD, Field CJ (2002) The immune-enhancing effects of dietary fibres and prebiotics. Br J Nutr 87(S 2):S221–S230CrossRefGoogle Scholar
  57. 57.
    Shahsavani D, Mohri M, Gholipour KH (2010) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol Biochem 36(1):39–43CrossRefGoogle Scholar
  58. 58.
    Shirdel I, Kalbassi MR (2016) Effects of nonylphenol on key hormonal balances and histopathology of the endangered Caspian brown trout (Salmo trutta caspius). Comp Biochem Physiol C Toxicol Pharmacol 183–184:28–35CrossRefGoogle Scholar
  59. 59.
    Siwicki AK, Anderson DP (1993) Nonspecific defense mechanisms assay in fish: II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin level in serum. In: Siwicki AK, Anderson DP, Waluga J (eds) Fish diseases diagnosis and prevention methods. FAO-Pro-ject GCP/INT/526/JPN, Wyd. IRS, Olsztyn, Poland, p 105–112Google Scholar
  60. 60.
    Song SK, Beck BR, Kim D, Park J, Jungjoon Kim J, Kim HD, Ringø E (2014) Prebiotics as immunostimulants in aquaculture: a review. Fish Shellfish Immunol 40(1):40–48CrossRefGoogle Scholar
  61. 61.
    Sourinejad I, Kalbassi MR, Martinez P (2015) Mixed milt fertilization of endangered Caspian brown trout Salmo trutta caspius influences effective population size of breeders. Iran J Fish Sci 14(2):393–408Google Scholar
  62. 62.
    Trivedi SP, Kumar M, Mishra A, Banerjee I, Soni A (2001) Impact of linear alkyl benzene sulphonate (LAS) on phosphatase activity in testis of the teleostean fish, Heteropneustes fossilis (Bloch). J Environ Biol 22(4):263–266Google Scholar
  63. 63.
    Witeska M (2015) Anemia in teleost fishes. Bull Eur Ass Fish Pathol 35(4):148–160Google Scholar
  64. 64.
    Wooldridge KG, Williams PH (1993) Iron uptake mechanisms of pathogenic bacteria. FEMS Microbiol Rev 12(4):325–348CrossRefGoogle Scholar
  65. 65.
    Ye JD, Wang K, Li FD, Sun YZ (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquac Nutr 17(4):e902–e911CrossRefGoogle Scholar
  66. 66.
    Zhang CN, Li XF, Xu WN, Jiang GZ, Lu KL, Wang LN, Liu WB (2013) Combined effects of dietary fructooligosaccharide supplementation and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis). Fish Shellfish Immunol 35(5):1380–1386CrossRefGoogle Scholar
  67. 67.
    Zhang CN, Li XF, Xu WN, Zhang DD, Lu KL, Wang LN, Tian HY, Liu WB (2015) Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on growth performance, body composition, intestinal enzymes activities and gut histology of triangular bream (Megalobrama terminalis). Aquac Nutr 21(5):755–766CrossRefGoogle Scholar
  68. 68.
    Zhang Q, Tan B, Mai K, Zhang W, Ma H, Ai Q, Wang X, Liufu Z (2011) Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac Res 42(7):943–952CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Maryam Aftabgard
    • 1
    Email author
  • Alireza Salarzadeh
    • 1
  • Mahmoud Mohseni
    • 2
  • Amir Houshang Bahri Shabanipour
    • 1
  • Mohammad Ebrahim Jalil Zorriehzahra
    • 3
  1. 1.Department of Fisheries, College of Natural Resources, Bandar Abbas BranchIslamic Azad UniversityBandar AbbasIran
  2. 2.Coldwater Fishes Research Center (CFRC), Iranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO)TonekabonIran
  3. 3.Department of Aquatic Animal Health and DiseasesIranian Fisheries Science Research Institute (IFSRI), Agricultural Research, Education and Extension Organization (AREEO)TehranIran

Personalised recommendations