Advertisement

Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 133–142 | Cite as

The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: a Randomized, Double-Blind, Placebo-Controlled Trial

  • Alireza Farrokhian
  • Fariba Raygan
  • Ali Soltani
  • Maryam Tajabadi-Ebrahimi
  • Mehran Sharifi Esfahani
  • Ali Akbar Karami
  • Zatollah AsemiEmail author
Article

Abstract

Synbiotics are known to exert multiple beneficial effects, including anti-inflammatory and antioxidant actions. The aim of this study was to evaluate the effects of synbiotic supplementation on carotid intima-media thickness (CIMT), biomarkers of inflammation, and oxidative stress in people with overweight, diabetes, and coronary heart disease (CHD). This randomized, double-blind, placebo-controlled trial was conducted and involved 60 people with overweight, diabetes, and CHD, aged 50–85 years old. Participants were randomly allocated into two groups to take either synbiotic supplements containing three probiotic bacteria spices Lactobacillus acidophilus strain T16 (IBRC-M10785), Lactobacillus casei strain T2 (IBRC-M10783), and Bifidobacterium bifidum strain T1 (IBRC-M10771) (2 × 109 CFU/g each) plus 800 mg inulin or placebo (n = 30 each group) for 12 weeks. Fasting blood samples were taken at baseline and after the 12-week intervention period to determine metabolic variables. After the 12-week intervention, compared with the placebo, synbiotic supplementation significantly reduced serum high-sensitivity C-reactive protein (hs-CRP) (− 3101.7 ± 5109.1 vs. − 6.2 ± 3163.6 ng/mL, P = 0.02), plasma malondialdehyde (MDA) (− 0.6 ± 1.0 vs. − 0.1 ± 0.3 μmol/L, P = 0.01), and significantly increased nitric oxide (NO) levels (+ 7.8 ± 10.3 vs. − 3.6 ± 6.9 μmol/L, P < 0.001). We did not observe any significant changes of synbiotic supplementation on other biomarkers of oxidative stress and CIMT levels. Overall, synbiotic supplementation for 12 weeks among people with overweight, diabetes, and CHD had beneficial effects on serum hs-CRP, plasma NO, and MDA levels; however, it did not have any effect on other biomarkers of oxidative stress and CIMT levels.

Keywords

Synbiotic supplementation Carotid intima-media thickness Inflammation Oxidative stress Type 2 diabetes mellitus Coronary heart disease 

Notes

Authors’ Contributions

AF, FR, AS, MT-E, MS-E, and AK contributed in data collection and manuscript drafting. ZA assisted in conception, design, statistical analysis, and drafting of the manuscript. All authors confirmed the final version of the paper.

Funding

The current study was funded by a grant from the Vice-Chancellor for Research, KUMS, and Iran.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

For Studies with Human Subjects

All procedures followed in the paper were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008. Informed consent was obtained from all patients for being included in the study.

References

  1. 1.
    Mathieu P, Poirier P, Pibarot P, Lemieux I, Després J-P (2009) Visceral obesity: the link among inflammation, hypertension, and cardiovascular disease. Hypertension 53:577–584.  https://doi.org/10.1161/HYPERTENSIONAHA.108.110320 CrossRefGoogle Scholar
  2. 2.
    Cordero A, Lopez-Palop R, Carrillo P, Moreno-Arribas J, Bertomeu-Gonzalez V, Frutos A, Garcia-Carrilero M, Gunturiz C, Bertomeu-Martinez V (2016) Comparison of long-term mortality for cardiac diseases in patients with versus without diabetes mellitus. Am J Cardiol 117:1088–1094.  https://doi.org/10.1016/j.amjcard.2015.12.057 CrossRefGoogle Scholar
  3. 3.
    Lewis CE, McTigue KM, Burke LE, Poirier P, Eckel RH, Howard BV, Allison DB, Kumanyika S, Pi-Sunyer FX (2009) Mortality, health outcomes, and body mass index in the overweight range: a science advisory from the American Heart Association. Circulation 119:3263–3271.  https://doi.org/10.1161/CIRCULATIONAHA.109.192574 CrossRefGoogle Scholar
  4. 4.
    Bayanfar Z, Sadeghi M, Heidari R, Gharipour M, Talaie M, Sedaghat A (2014) Carotid intima-media thickness and plasma fibrinogen among subjects with metabolic syndrome: Isfahan cohort study, Iran. ARYA Atheroscler 10:238–243Google Scholar
  5. 5.
    Reinehr T, Wunsch R, Putter C, Scherag A (2013) Relationship between carotid intima-media thickness and metabolic syndrome in adolescents. J Pediatr 163:327–332.  https://doi.org/10.1016/j.jpeds.2013.01.032 CrossRefGoogle Scholar
  6. 6.
    Boaz M, Chernin G, Schwartz I et al (2013) C-reactive protein and carotid and femoral intima media thickness: predicting inflammation. Clin Nephrol 80:449–455.  https://doi.org/10.5414/CN108067 CrossRefGoogle Scholar
  7. 7.
    Mangili A, Polak JF, Quach LA, Gerrior J, Wanke CA (2011) Markers of atherosclerosis and inflammation and mortality in patients with HIV infection. Atherosclerosis 214:468–473.  https://doi.org/10.1016/j.atherosclerosis.2010.11.013 CrossRefGoogle Scholar
  8. 8.
    Akram Kooshki A, Tofighiyan T, Rakhshani MH (2015) Effects of synbiotics on inflammatory markers in patients with type 2 diabetes mellitus. Glob J Health Sci 7:1–5.  https://doi.org/10.5539/gjhs.v7n7p1 CrossRefGoogle Scholar
  9. 9.
    Ahmadi S, Jamilian M, Tajabadi-Ebrahimi M, Jafari P, Asemi Z (2016) The effects of synbiotic supplementation on markers of insulin metabolism and lipid profiles in gestational diabetes: a randomised, double-blind, placebo-controlled trial. Br J Nutr 116:1394–1401.  https://doi.org/10.1017/S0007114516003457 CrossRefGoogle Scholar
  10. 10.
    Mofidi F, Yari Z, Poustchi H, Merat S, Nourinayyer B, Malekzadeh R, Hekmatdoost A (2016) Effects of synbiotics supplementation in lean patients with nonalcoholic fatty liver disease: study protocol of a pilot randomized double-blind clinical trial. Arch Iran Med 19:282–284Google Scholar
  11. 11.
    Ebrahimi ZS, Nasli-Esfahani E, Nadjarzade A, Mozaffari-Khosravi H (2017) Effect of symbiotic supplementation on glycemic control, lipid profiles and microalbuminuria in patients with non-obese type 2 diabetes: a randomized, double-blind, clinical trial. J Diabetes Metab Disord 16:23.  https://doi.org/10.1186/s40200-017-0304-8 CrossRefGoogle Scholar
  12. 12.
    Bahmani F, Tajadadi-Ebrahimi M, Kolahdooz F, Mazouchi M, Hadaegh H, Jamal AS, Mazroii N, Asemi S, Asemi Z (2016) The consumption of synbiotic bread containing lactobacillus sporogenes and inulin affects nitric oxide and malondialdehyde in patients with type 2 diabetes mellitus: randomized, double-blind, placebo-controlled trial. J Am Coll Nutr 35:506–513CrossRefGoogle Scholar
  13. 13.
    Tabrizi R, Moosazadeh M, Lankarani KB, Akbari M, Heydari ST, Kolahdooz F, Asemi Z (2017) The effects of synbiotic supplementation on glucose metabolism and lipid profiles in patients with diabetes: a systematic review and meta-analysis of randomized controlled trials. Probiotics Antimicrob Proteins.  https://doi.org/10.1007/s12602-017-9299-1
  14. 14.
    Memarrast F, Ghafouri-Fard S, Kolivand S, Jafary-Nodooshan S, Neyazi N, Sadroddiny E, Motevaseli E (2017) Comparative evaluation of probiotics effects on plasma glucose, lipid, and insulin levels in streptozotocin-induced diabetic rats. Diabetes Metab Res Rev.  https://doi.org/10.1002/dmrr.2912
  15. 15.
    Mazloom Z, Yousefinejad A, Dabbaghmanesh MH (2013) Effect of probiotics on lipid profile, glycemic control, insulin action, oxidative stress, and inflammatory markers in patients with type 2 diabetes: a clinical trial. Iran J Med Sci 38:38–43Google Scholar
  16. 16.
    D'Souza A, Fordjour L, Ahmad A, Cai C, Kumar D, Valencia G, Aranda JV, Beharry KD (2010) Effects of probiotics, prebiotics, and synbiotics on messenger RNA expression of caveolin-1, NOS, and genes regulating oxidative stress in the terminal ileum of formula-fed neonatal rats. Pediatr Res 67:526–531.  https://doi.org/10.1203/PDR.0b013e3181d4ff2b CrossRefGoogle Scholar
  17. 17.
    Matthews GM, Howarth GS, Butler RN (2007) Short-chain fatty acid modulation of apoptosis in the Kato III human gastric carcinoma cell line. Cancer Biol Ther 6:1051–1057CrossRefGoogle Scholar
  18. 18.
    American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90CrossRefGoogle Scholar
  19. 19.
    Welles CC, Whooley MA, Karumanchi SA, Hod T, Thadhani R, Berg AH, Ix JH, Mukamal KJ (2014) Vitamin D deficiency and cardiovascular events in patients with coronary heart disease: data from the Heart and Soul Study. Am J Epidemiol 179:1279–1287.  https://doi.org/10.1093/aje/kwu059 CrossRefGoogle Scholar
  20. 20.
    Soccol CR, Vandenberghe LPS, Spier MR, Medeiros ABP, Yamaguishi CT, Lindner JDD, Pandey A, Thomaz-Soccol V (2010) The potential of probiotics: a review. Food Technol Biotechnol 48:413–434Google Scholar
  21. 21.
    Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S (2016) The effects of probiotics on mental health and hypothalamic-pituitary-adrenal axis: a randomized, double-blind, placebo-controlled trial in petrochemical workers. Nutr Neurosci 19:387–395CrossRefGoogle Scholar
  22. 22.
    Benton D, Williams C, Brown A (2007) Impact of consuming a milk drink containing a probiotic on mood and cognition. Eur J Clin Nutr 61:355–361CrossRefGoogle Scholar
  23. 23.
    Tatsch E, Bochi GV, Pereira Rda S, Kober H, Agertt VA, de Campos MM, Gomes P, Duarte MM, Moresco RN (2011) A simple and inexpensive automated technique for measurement of serum nitrite/nitrate. Clin Biochem 44:348–350.  https://doi.org/10.1016/j.clinbiochem.2010.12.011 CrossRefGoogle Scholar
  24. 24.
    Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76CrossRefGoogle Scholar
  25. 25.
    Beutler E, Gelbart T (1985) Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med 105:581–584Google Scholar
  26. 26.
    Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med 9:515–540CrossRefGoogle Scholar
  27. 27.
    Paneni F, Costantino S, Cosentino F (2014) Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 16:419.  https://doi.org/10.1007/s11883-014-0419-z CrossRefGoogle Scholar
  28. 28.
    Cheng CP, Tsai SW, Chiu CP, Pan TM, Tsai TY (2013) The effect of probiotic-fermented soy milk on enhancing the NO-mediated vascular relaxation factors. J Sci Food Agric 93:1219–1225.  https://doi.org/10.1002/jsfa.5880 CrossRefGoogle Scholar
  29. 29.
    Asemi Z, Khorrami-Rad A, Alizadeh SA, Shakeri H, Esmaillzadeh A (2014) Effects of synbiotic food consumption on metabolic status of diabetic patients: a double-blind randomized cross-over controlled clinical trial. Clin Nutr 33:198–203.  https://doi.org/10.1016/j.clnu.2013.05.015 CrossRefGoogle Scholar
  30. 30.
    Neto JV, de Melo CM, Ribeiro SM (2013) Effects of three-month intake of synbiotic on inflammation and body composition in the elderly: a pilot study. Nutrients 5:1276–1286.  https://doi.org/10.3390/nu5041276 CrossRefGoogle Scholar
  31. 31.
    Styskal J, Van Remmen H, Richardson A, Salmon AB (2012) Oxidative stress and diabetes: what can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic Biol Med 52:46–58.  https://doi.org/10.1016/j.freeradbiomed.2011.10.441 CrossRefGoogle Scholar
  32. 32.
    Ceriello A, Esposito K, Piconi L, Ihnat MA, Thorpe JE, Testa R, Boemi M, Giugliano D (2008) Oscillating glucose is more deleterious to endothelial function and oxidative stress than mean glucose in normal and type 2 diabetic patients. Diabetes 57:1349–1354.  https://doi.org/10.2337/db08-0063 CrossRefGoogle Scholar
  33. 33.
    Esper RJ, Nordaby RA, Vilarino JO, Paragano A, Cacharron JL, Machado RA (2006) Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol 5:4CrossRefGoogle Scholar
  34. 34.
    Kalina U, Koyama N, Hosoda T, Nuernberger H, Sato K, Hoelzer D, Herweck F, Manigold T, Singer MV, Rossol S, Böcker U (2002) Enhanced production of IL-18 in butyrate-treated intestinal epithelium by stimulation of the proximal promoter region. Eur J Immunol 32:2635–2643CrossRefGoogle Scholar
  35. 35.
    Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P (2010) Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 10:4.  https://doi.org/10.1186/1471-2180-10-4 CrossRefGoogle Scholar
  36. 36.
    Wang Y, Xie J, Li Y, Dong S, Liu H, Chen J, Zhao S, Zhang Y, Zhang H (2016) Probiotic Lactobacillus casei Zhang reduces pro-inflammatory cytokine production and hepatic inflammation in a rat model of acute liver failure. Eur J Nutr 55:821–831.  https://doi.org/10.1007/s00394-015-0904-3 CrossRefGoogle Scholar
  37. 37.
    Zhang LL, Gao CY, Fang CQ, Wang YJ, Gao D, Yao GE, Xiang J, Wang JZ, Li JC (2011) PPARgamma attenuates intimal hyperplasia by inhibiting TLR4-mediated inflammation in vascular smooth muscle cells. Cardiovasc Res 92:484–493.  https://doi.org/10.1093/cvr/cvr238 CrossRefGoogle Scholar
  38. 38.
    Yao J, Pan D, Zhao Y, Zhao L, Sun J, Wang Y, You QD, Xi T, Guo QL, Lu N (2014) Wogonin prevents lipopolysaccharide-induced acute lung injury and inflammation in mice via peroxisome proliferator-activated receptor gamma-mediated attenuation of the nuclear factor-kappaB pathway. Immunology 143:241–257.  https://doi.org/10.1111/imm.12305 CrossRefGoogle Scholar
  39. 39.
    Kinoshita A, Onoda H, Imai N, Nishino H, Tajiri H (2015) C-reactive protein as a prognostic marker in patients with hepatocellular carcinoma. Hepato-Gastroenterology 62:966–970Google Scholar
  40. 40.
    Hegazy SK, El-Bedewy MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16:4145–4151CrossRefGoogle Scholar
  41. 41.
    Kleniewska P, Pawliczak R (2017) Influence of synbiotics on selected oxidative stress parameters. Oxidative Med Cell Longev 2017:9315375.  https://doi.org/10.1155/2017/9315375 CrossRefGoogle Scholar
  42. 42.
    Badehnoosh B, Karamali M, Zarrati M, Jamilian M, Bahmani F, Tajabadi-Ebrahimi M, Jafari P, Rahmani E, Asemi Z (2017) The effects of probiotic supplementation on biomarkers of inflammation, oxidative stress and pregnancy outcomes in gestational diabetes. J Matern Fetal Neonatal Med:1–9.  https://doi.org/10.1080/14767058.2017.1310193
  43. 43.
    Osman N, Adawi D, Molin G, Ahrne S, Berggren A, Jeppsson B (2006) Bifidobacterium infantis strains with and without a combination of oligofructose and inulin (OFI) attenuate inflammation in DSS-induced colitis in rats. BMC Gastroenterol 6:31CrossRefGoogle Scholar
  44. 44.
    Ghoneim MA, Moselhy SS (2016) Antioxidant status and hormonal profile reflected by experimental feeding of probiotics. Toxicol Ind Health 32:741–750.  https://doi.org/10.1177/0748233713506768 CrossRefGoogle Scholar
  45. 45.
    Nikniaz L, Mahdavi R, Ostadrahimi A, Hejazi MA, Vatankhah AM (2013) Effects of synbiotic supplementation on total antioxidant capacity of human breastmilk. Breastfeed Med 8:217–222.  https://doi.org/10.1089/bfm.2012.0078 CrossRefGoogle Scholar
  46. 46.
    Jafarpour D, Shekarforoush SS, Ghaisari HR, Nazifi S, Sajedianfard J, Eskandari MH (2017) Protective effects of synbiotic diets of Bacillus coagulans, Lactobacillus plantarum and inulin against acute cadmium toxicity in rats. BMC Complement Altern Med 17:291.  https://doi.org/10.1186/s12906-017-1803-3 CrossRefGoogle Scholar
  47. 47.
    Ebrahimi-Mameghani M, Sanaie S, Mahmoodpoor A, Hamishehkar H (2013) Effect of a probiotic preparation (VSL#3) in critically ill patients: a randomized, double-blind, placebo-controlled trial (Pilot Study). Pak J Med Sci 29:490–494Google Scholar
  48. 48.
    Lamprecht M, Bogner S, Schippinger G, Steinbauer K, Fankhauser F, Hallstroem S, Schuetz B, Greilberger JF (2012) Probiotic supplementation affects markers of intestinal barrier, oxidation, and inflammation in trained men; a randomized, double-blinded, placebo-controlled trial. J Int Soc Sports Nutr 9:45.  https://doi.org/10.1186/1550-2783-9-45 CrossRefGoogle Scholar
  49. 49.
    Marjani A (2010) Lipid peroxidation alterations in type 2 diabetic patients. Pak J Biol Sci 13:723–730CrossRefGoogle Scholar
  50. 50.
    Sadrzadeh-Yeganeh H, Elmadfa I, Djazayery A, Jalali M, Heshmat R, Chamary M (2010) The effects of probiotic and conventional yoghurt on lipid profile in women. Br J Nutr 103:1778–1783.  https://doi.org/10.1017/S0007114509993801 CrossRefGoogle Scholar
  51. 51.
    Kullisaar T, Songisepp E, Mikelsaar M, Zilmer K, Vihalemm T, Zilmer M (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90:449–456CrossRefGoogle Scholar
  52. 52.
    Motohashi H, Yamamoto M (2004) Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549–557CrossRefGoogle Scholar
  53. 53.
    Gao D, Gao Z, Zhu G (2013) Antioxidant effects of Lactobacillus plantarum via activation of transcription factor Nrf2. Food Funct 4:982–989.  https://doi.org/10.1039/c3fo30316k CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alireza Farrokhian
    • 1
  • Fariba Raygan
    • 1
  • Ali Soltani
    • 2
  • Maryam Tajabadi-Ebrahimi
    • 3
  • Mehran Sharifi Esfahani
    • 4
  • Ali Akbar Karami
    • 5
  • Zatollah Asemi
    • 2
    Email author
  1. 1.Department of Cardiology, School of MedicineKashan University of Medical SciencesKashanIran
  2. 2.Research Center for Biochemistry and Nutrition in Metabolic DiseasesKashan University of Medical SciencesKashanIran
  3. 3.Science Department, Science FacultyIslamic Azad University, Tehran Central BranchTehranIran
  4. 4.Department of Oncology, School of MedicineKashan University of Medical SciencesKashanIran
  5. 5.Department of Urology, School of MedicineQazvin University of Medical SciencesQazvinIran

Personalised recommendations