Probiotics and Antimicrobial Proteins

, Volume 11, Issue 1, pp 23–29 | Cite as

Effect of Lactobacillus rhamnosus NCDC 298 with FOS in Combination on Viability and Toxin Production of Enterotoxigenic Escherichia coli

  • Santosh Anand
  • Surajit MandalEmail author
  • Sudhir Kumar Tomar


The present study was to investigate the utilization of prebiotics by Lactobacillus rhamnosus NCDC 298 and its synergistic adversary effect on both population and production of heat-labile (LT) toxin in enterotoxigenic Escherichia coli (ETEC). To select suitable prebiotic in order to enhance functionality, its utilization and the prebiotic activity score was examined. Antivirulence effect on ETEC was inspected by its inactivation rate and heat-labile toxin production in presence of different synbiotic combination. L. rhamnosus NCDC 298 strain grown well on media supplemented with fructooligosaccharides (FOS) and galactooligosaccharides (GOS), whereas significant inactivation of ETEC was observed when FOS was added to the co-culture medium. Significant decrease in LT enterotoxin was seen through GM1 ganglioside enzyme linked immunoassay (GM1 ELISA), when ETEC has grown with L. rhamnosus NCDC 298 and FOS. Short-chain FOS proved to be the most effective substrate, improving antagonistic activity for L. rhamnosus NCDC 298. Both L. rhamnosus NCDC 298 with FOS can be used as an effective synbiotic combination for secretory antidiarrheal fermented dairy formulations.


Probiotics Enterotoxigenic Escherichia coli Prebiotics Synbiotic Diarrhea 



The authors thank the Director of ICAR-NDRI for supporting the work.


There was no funding available.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Casburn-Jones AC, Farthing M (2004) Management of infectious diarrhoea. Gut 53:296–305CrossRefGoogle Scholar
  2. 2.
    Dubreuil JD (2008) Escherichia coli STb toxin and colibacillosis: knowing is half the battle. FEMS Microbiol Lett 278:137–145CrossRefGoogle Scholar
  3. 3.
    FAO/WHO Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London, Ontario, Canada, April 30 and May 1, 2002.
  4. 4.
    Anand S, Mandal S, Patil P, Tomar SK (2016) Pathogen-induced secretory diarrhea and its prevention. Eur J Clin Microbiol Infect Dis 35(11):1721–1739CrossRefGoogle Scholar
  5. 5.
    Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Bio Rev 72(4):728–764CrossRefGoogle Scholar
  6. 6.
    Sudhakaran VA, Panwar H, Chauhan R, Duary RK, Rathore RK, Batish VK, Grover S (2013) Modulation of anti-inflammatory response in lipopolysaccharide stimulated human THP-1 cell line and mouse model at gene expression level with indigenous putative probiotic lactobacilli. Genes Nutr 8(6):637–648CrossRefGoogle Scholar
  7. 7.
    Buddington KK, Donahoo JB, Buddington RK (2002) Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J Nutr 132(3):472–477CrossRefGoogle Scholar
  8. 8.
    Quintero M, Maldonado M, Perez-Munoz M, Jimenez R, Fangman T, Rupnow J, Wittke A, Russell M, Hutkins R (2011) Adherence inhibition of Cronobacter sakazakii to intestinal epithelial cells by prebiotic oligosaccharides. Curr Microbiol 62(5):1448–1454CrossRefGoogle Scholar
  9. 9.
    Sangwan V, Tomar SK, Ali B, Singh RR, Singh AK (2015) Galactooligosaccharides reduce infection caused by Listeria monocytogenes and modulate IgG and IgA levels in mice. Int Dairy J 28(41):58–63CrossRefGoogle Scholar
  10. 10.
    Servin AL, Coconnier MH (2004) Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 17:741–754CrossRefGoogle Scholar
  11. 11.
    Araya-Kojima T, Yaeshima T, Ishibashi N, Shimamura S, Hayasawa H (1995) Inhibitory effects of Bifidobacterium longum BB536 on harmful intestinal bacteria. Bifidobacteria and Microflora 14(2):59–66CrossRefGoogle Scholar
  12. 12.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the colonic micro biota: introducing the concept of prebiotics. J Nutr 125:1401–1412CrossRefGoogle Scholar
  13. 13.
    Preidis GA, Versalovic J (2009) Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136:2015–2031CrossRefGoogle Scholar
  14. 14.
    Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91(6):985–996CrossRefGoogle Scholar
  15. 15.
    Fooks LJ, Fuller R, Gibson GR (1999) Prebiotics, probiotics and human gut microbiology. Int Dairy J 9(1):53–61CrossRefGoogle Scholar
  16. 16.
    Frece J, Kos B, Svetec IK, Zgaga Z, Beganovic J, Lebos A, Suskovic J (2009) Synbiotic effect of Lactobacillus helveticus M92 and prebiotics on the intestinal microflora and immune system of mice. J Dairy Res 76(01):98–104CrossRefGoogle Scholar
  17. 17.
    Bomba A, Nemcova R, Gancarcikova S, Herich R, Guba P, Mudronova D (2002) Improvement of the probiotic effect of micro-organisms by their combination with maltodextrins, fructo-oligosaccharides and polyunsaturated fatty acids. Br J Nutr 88(S1):S95–S99CrossRefGoogle Scholar
  18. 18.
    Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA (2013) Development of antimicrobial synbiotics using potentially-probiotic faecal isolates of Lactobacillus fermentum and Bifidobacterium longum. Anaerobe 20:5–13CrossRefGoogle Scholar
  19. 19.
    Huebner J, Wehling RL, Hutkins RW (2007) Functional activity of commercial prebiotics. Int Dairy J 17(7):770–775CrossRefGoogle Scholar
  20. 20.
    Geeraerd AH, Valdramidis VP, Van Impe JF (2005) GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int J Food Microbiol 102:95–105CrossRefGoogle Scholar
  21. 21.
    Ristaino PA, Levine MM, Young CR (1983) Improved GM1-enzyme-linked immunosorbent assay for detection of Escherichia coli heat-labile enterotoxin. J Clin Microbiol 18(4):808–815Google Scholar
  22. 22.
    Mei GY, Carey CM, Tosh S, Kostrzynska M (2011) Utilization of different types of dietary fibres by potential probiotics. Can J Microbiol 57(10):857–865CrossRefGoogle Scholar
  23. 23.
    Munoz JAM, Chenoll E, Casinos B, Bataller E, Ramon D, Genoves S, Montava R, Ribes JM, Buesa J, Fabrega J (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77:8775–8783CrossRefGoogle Scholar
  24. 24.
    Likotrafiti E, Valavani P, Argiriou A, Rhoades J (2015) In vitro evaluation of potential antimicrobial synbiotics using Lactobacillus kefiri isolated from kefir grains. Int Dairy J 45:23–30CrossRefGoogle Scholar
  25. 25.
    Saulnier DM, Spinler JK, Gibson GR, Versalovic J (2009) Mechanisms of probiosis and prebiosis: considerations for enhanced functional foods. Curr Opinion Biotechnol 20(2):135–141CrossRefGoogle Scholar
  26. 26.
    Falony G, Verschaeren A, De Bruycker F, De Preter V, Verbeke K, Leroy F, De Vuyst L (2009) In vitro kinetics of prebiotic inulin-type fructan fermentation by butyrate producing colon bacteria: implementation of online gas chromatography for quantitative analysis of carbon dioxide and hydrogen gas production. Appl Environ Microbiol 75:5884–5892CrossRefGoogle Scholar
  27. 27.
    Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A 100:8957–8962CrossRefGoogle Scholar
  28. 28.
    Gonzalez-Fandos ME, Sierra M, Garcia-Lopez ML, Fernandez-Alvarez MF, Prieto M, Ote-Ro A (1997) Effect of lactic acid bacteria on growth of Staphylococcus aureus and enterotoxins, and the thermonuclease production in broth. Arch Leb 48(2):38–41Google Scholar
  29. 29.
    Fooks LJ, Gibson GR (2002) In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiol Ecol 39(1):67–75CrossRefGoogle Scholar
  30. 30.
    Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001) Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microbiol 68:135–140CrossRefGoogle Scholar
  31. 31.
    Snijders JM, Van Logtestijn JG, Mossel DA, Smulderst FJ (1985) Lactic acid as a decontaminant in slaughter and processing procedures. Veter Quart 7(4):277–282CrossRefGoogle Scholar
  32. 32.
    Kostrzynska M, Bachand A (2006) Use of microbial antagonism to reduce pathogen levels on produce and meat products: a review. Can J Microbiol 52(11):1017–1026CrossRefGoogle Scholar
  33. 33.
    Zhou M, Yu H, Yin X, Sabour PM, Chen W, Gong J (2014) Lactobacillus zeae protects Caenorhabditis elegans from enterotoxigenic Escherichia coli-caused death by inhibiting enterotoxin gene expression of the pathogen. PLoS One 18:9(2)Google Scholar
  34. 34.
    Dubreuil JD (2017) Enterotoxigenic Escherichia coli and probiotics in swine: what the bleep do we know? Biosci Microbiota Food Health 36:75–90CrossRefGoogle Scholar
  35. 35.
    Hegde A, Bhat GK, Mallya S (2009) Effect of stress on production of heat-labile enterotoxin by Escherichia coli. Indian J Med Microbiol 27:325–328CrossRefGoogle Scholar
  36. 36.
    Carey CM, Kostrzynska M, Ojha S, Thompson S (2008) The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic Escherichia coli O157:H7. J Microbiol Meth 73:125–132CrossRefGoogle Scholar
  37. 37.
    Medellin-Pena MJ, Wang H, Johnson R, Anand S, Griffiths MW (2007) Probiotics affect virulence-related gene expression in Escherichia coli O157:H7. Appl Environ Microbiol 73:4259–4267CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Santosh Anand
    • 1
  • Surajit Mandal
    • 1
    Email author
  • Sudhir Kumar Tomar
    • 1
  1. 1.TFSL, Dairy Microbiology DivisionICAR-National Dairy Research InstituteKarnalIndia

Personalised recommendations